These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 18771503)
1. Physical defences wear you down: progressive and irreversible impacts of silica on insect herbivores. Massey FP; Hartley SE J Anim Ecol; 2009 Jan; 78(1):281-91. PubMed ID: 18771503 [TBL] [Abstract][Full Text] [Related]
2. Silica in grasses as a defence against insect herbivores: contrasting effects on folivores and a phloem feeder. Massey FP; Ennos AR; Hartley SE J Anim Ecol; 2006 Mar; 75(2):595-603. PubMed ID: 16638012 [TBL] [Abstract][Full Text] [Related]
3. Local and systemic effects of two herbivores with different feeding mechanisms on primary metabolism of cotton leaves. Schmidt L; Schurr U; Röse US Plant Cell Environ; 2009 Jul; 32(7):893-903. PubMed ID: 19302172 [TBL] [Abstract][Full Text] [Related]
4. Patterns and mechanisms of growth of fifth-instar Manduca sexta caterpillars following exposure to low- or high-protein food during early instars. Woods HA Physiol Biochem Zool; 1999; 72(4):445-54. PubMed ID: 10438682 [TBL] [Abstract][Full Text] [Related]
5. The interactive effects of protein quality and macronutrient imbalance on nutrient balancing in an insect herbivore. Lee KP J Exp Biol; 2007 Sep; 210(Pt 18):3236-44. PubMed ID: 17766301 [TBL] [Abstract][Full Text] [Related]
6. The toxicity and physiological effect of goniothalamin, a styryl-pyrone, on the generalist herbivore, Spodoptera exigua Hübner. Senthil-Nathan S; Choi MY; Paik CH; Kalaivani K Chemosphere; 2008 Jul; 72(9):1393-400. PubMed ID: 18499224 [TBL] [Abstract][Full Text] [Related]
7. Experimental demonstration of the antiherbivore effects of silica in grasses: impacts on foliage digestibility and vole growth rates. Massey FP; Hartley SE Proc Biol Sci; 2006 Sep; 273(1599):2299-304. PubMed ID: 16928631 [TBL] [Abstract][Full Text] [Related]
8. A comparison of nutrient regulation between solitarious and gregarious phases of the specialist caterpillar, Spodoptera exempta (Walker). Lee KP; Simpson SJ; Raubenheimer D J Insect Physiol; 2004 Dec; 50(12):1171-80. PubMed ID: 15670864 [TBL] [Abstract][Full Text] [Related]
9. Herbivore specific induction of silica-based plant defences. Massey FP; Ennos AR; Hartley SE Oecologia; 2007 Jul; 152(4):677-83. PubMed ID: 17375331 [TBL] [Abstract][Full Text] [Related]
10. Food utilization and growth of cutworm Spodoptera litura Fabricius larvae exposed to nickel, and its effect on reproductive potential. Sun HX; Tang WC; Chen H; Chen W; Zhang M; Liu X; Zhang GR Chemosphere; 2013 Nov; 93(10):2319-26. PubMed ID: 24103438 [TBL] [Abstract][Full Text] [Related]
11. Silica and nitrogen modulate physical defense against chewing insect herbivores in bioenergy crops Miscanthus x Giganteus and Panicum virgatum (Poaceae). Nabity PD; Orpet R; Miresmailli S; Berenbaum MR; DeLucia EH J Econ Entomol; 2012 Jun; 105(3):878-83. PubMed ID: 22812125 [TBL] [Abstract][Full Text] [Related]
12. Plant Silicon Defences Suppress Herbivore Performance, but Mode of Feeding Is Key. Johnson SN; Waterman JM; Hartley SE; Cooke J; Ryalls JMW; Lagisz M; Nakagawa S Ecol Lett; 2024 Oct; 27(10):e14519. PubMed ID: 39400424 [TBL] [Abstract][Full Text] [Related]
13. The effect of dietary nickel on the immune responses of Spodoptera litura Fabricius larvae. Sun HX; Dang Z; Xia Q; Tang WC; Zhang GR J Insect Physiol; 2011 Jul; 57(7):954-61. PubMed ID: 21540035 [TBL] [Abstract][Full Text] [Related]
14. Immunological cost of chemical defence and the evolution of herbivore diet breadth. Smilanich AM; Dyer LA; Chambers JQ; Bowers MD Ecol Lett; 2009 Jul; 12(7):612-21. PubMed ID: 19392713 [TBL] [Abstract][Full Text] [Related]
15. Performance of Spodoptera litura Fabricius on different host plants: influence of nitrogen and total phenolics of plants and mid-gut esterase activity of the insect. Ghumare SS; Mukherjee SN Indian J Exp Biol; 2003 Aug; 41(8):895-9. PubMed ID: 15248492 [TBL] [Abstract][Full Text] [Related]
16. Optimization of gut structure and diet for higher vertebrate herbivores. Alexander RM Philos Trans R Soc Lond B Biol Sci; 1991 Aug; 333(1267):249-54; discussion 254-5. PubMed ID: 1682960 [TBL] [Abstract][Full Text] [Related]
17. The role of neuropeptides in caterpillar nutritional ecology. Bede JC; McNeil JN; Tobe SS Peptides; 2007 Jan; 28(1):185-96. PubMed ID: 17161504 [TBL] [Abstract][Full Text] [Related]
18. Delayed induced silica defences in grasses and their potential for destabilising herbivore population dynamics. Reynolds JJ; Lambin X; Massey FP; Reidinger S; Sherratt JA; Smith MJ; White A; Hartley SE Oecologia; 2012 Oct; 170(2):445-56. PubMed ID: 22526942 [TBL] [Abstract][Full Text] [Related]
19. Anti-herbivore silicon defences in a model grass are greatest under Miocene levels of atmospheric CO Biru FN; Islam T; Cibils-Stewart X; Cazzonelli CI; Elbaum R; Johnson SN Glob Chang Biol; 2021 Jun; 27(12):2959-2969. PubMed ID: 33772982 [TBL] [Abstract][Full Text] [Related]
20. RNA interference with the allatoregulating neuropeptide genes from the fall armyworm Spodoptera frugiperda and its effects on the JH titer in the hemolymph. Griebler M; Westerlund SA; Hoffmann KH; Meyering-Vos M J Insect Physiol; 2008 Jun; 54(6):997-1007. PubMed ID: 18541256 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]