These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 18771792)
21. Forest floor decomposition, metal exchangeability, and metal bioaccumulation by exotic earthworms: Amynthas agrestis and Lumbricus rubellus. Richardson JB; Görres JH; Friedland AJ Environ Sci Pollut Res Int; 2016 Sep; 23(18):18253-66. PubMed ID: 27272919 [TBL] [Abstract][Full Text] [Related]
22. Evidence for involvement of gut-associated denitrifying bacteria in emission of nitrous oxide (N(2)O) by earthworms obtained from garden and forest soils. Matthies C; Griesshammer A; Schmittroth M; Drake HL Appl Environ Microbiol; 1999 Aug; 65(8):3599-604. PubMed ID: 10427055 [TBL] [Abstract][Full Text] [Related]
23. Bioturbation of Ag Baccaro M; Harrison S; van den Berg H; Sloot L; Hermans D; Cornelis G; van Gestel CAM; van den Brink NW Environ Pollut; 2019 Sep; 252(Pt A):155-162. PubMed ID: 31146230 [TBL] [Abstract][Full Text] [Related]
24. Non-native earthworms in riparian soils increase nitrogen flux into adjacent aquatic ecosystems. Costello DM; Lamberti GA Oecologia; 2008 Dec; 158(3):499-510. PubMed ID: 18825416 [TBL] [Abstract][Full Text] [Related]
25. Assessment of short and long-term effects of imidacloprid on the burrowing behaviour of two earthworm species (Aporrectodea caliginosa and Lumbricus terrestris) by using 2D and 3D post-exposure techniques. Dittbrenner N; Moser I; Triebskorn R; Capowiez Y Chemosphere; 2011 Sep; 84(10):1349-55. PubMed ID: 21632088 [TBL] [Abstract][Full Text] [Related]
26. Residues effects of isoproturon in mature earthworm (Aporrectodea caliginosa) under laboratory conditions. Youssef Y; Mosleh I Commun Agric Appl Biol Sci; 2007; 72(2):117-27. PubMed ID: 18399432 [TBL] [Abstract][Full Text] [Related]
27. Modification of clay barriers with a cationic surfactant to improve the retention of pesticides in soils. Rodríguez-Cruz MS; Sánchez-Martín MJ; Andrades MS; Sánchez-Camazano M J Hazard Mater; 2007 Jan; 139(2):363-72. PubMed ID: 16879917 [TBL] [Abstract][Full Text] [Related]
28. Differences in p,p'-DDE bioaccumulation from compost and soil by the plants Cucurbita pepo and Cucurbita maxima and the earthworms Eisenia fetida and Lumbricus terrestris. Peters R; Kelsey JW; White JC Environ Pollut; 2007 Jul; 148(2):539-45. PubMed ID: 17241722 [TBL] [Abstract][Full Text] [Related]
29. Assessing ecotoxicity and uptake of metals and metalloids in relation to two different earthworm species (Eiseina hortensis and Lumbricus terrestris). Leveque T; Capowiez Y; Schreck E; Mazzia C; Auffan M; Foucault Y; Austruy A; Dumat C Environ Pollut; 2013 Aug; 179():232-41. PubMed ID: 23688736 [TBL] [Abstract][Full Text] [Related]
30. Growth and reproduction of earthworms in ultramafic soils. Maleri R; Reinecke SA; Mesjasz-Przybylowicz J; Reinecke AJ Arch Environ Contam Toxicol; 2007 Apr; 52(3):363-70. PubMed ID: 17354041 [TBL] [Abstract][Full Text] [Related]
31. Bioaccumulation of organic chemicals in contaminated soils: evaluation of bioassays with earthworms. Jager T; van der Wal L; Fleuren RH; Barendregt A; Hermens JL Environ Sci Technol; 2005 Jan; 39(1):293-8. PubMed ID: 15667108 [TBL] [Abstract][Full Text] [Related]
32. Impact of gut passage and mucus secretion by the earthworm Lumbricus terrestris on mobility and speciation of arsenic in contaminated soil. Sizmur T; Watts MJ; Brown GD; Palumbo-Roe B; Hodson ME J Hazard Mater; 2011 Dec; 197():169-75. PubMed ID: 21996620 [TBL] [Abstract][Full Text] [Related]
33. Willow growth in response to nutrients and moisture on a clay landfill cap soil. II: Water use. Martin PJ; Stephens W Bioresour Technol; 2006 Feb; 97(3):449-58. PubMed ID: 16216729 [TBL] [Abstract][Full Text] [Related]
34. Effect of clay content and wetting-and-drying on radiocaesium behaviour in a peat and a peaty podzol. Rosén K; Shand CA; Haak E; Cheshire MV Sci Total Environ; 2006 Sep; 368(2-3):795-803. PubMed ID: 16626782 [TBL] [Abstract][Full Text] [Related]
35. Time effect on bentazone sorption and degradation in soil. Boivin A; Cherrier R; Perrin-Ganier C; Schiavon M Pest Manag Sci; 2004 Aug; 60(8):809-14. PubMed ID: 15307673 [TBL] [Abstract][Full Text] [Related]
36. Tissue distribution and characterization of cholinesterase activity in six earthworm species. Rault M; Mazzia C; Capowiez Y Comp Biochem Physiol B Biochem Mol Biol; 2007 Jun; 147(2):340-6. PubMed ID: 17347007 [TBL] [Abstract][Full Text] [Related]
37. Selection of focal earthworm species as non-target soil organisms for environmental risk assessment of genetically modified plants. van Capelle C; Schrader S; Arpaia S Sci Total Environ; 2016 Apr; 548-549():360-369. PubMed ID: 26803734 [TBL] [Abstract][Full Text] [Related]
38. Biomarker response and biomass change of earthworms exposed to chlorpyrifos in microcosms. Reinecke SA; Reinecke AJ Ecotoxicol Environ Saf; 2007 Jan; 66(1):92-101. PubMed ID: 16324744 [TBL] [Abstract][Full Text] [Related]
39. Molecular profiling of 16S rRNA genes reveals diet-related differences of microbial communities in soil, gut, and casts of Lumbricus terrestris L. (Oligochaeta: Lumbricidae). Egert M; Marhan S; Wagner B; Scheu S; Friedrich MW FEMS Microbiol Ecol; 2004 May; 48(2):187-97. PubMed ID: 19712402 [TBL] [Abstract][Full Text] [Related]
40. Assessment of the effects of imidacloprid on the behavior of two earthworm species (Aporrectodea nocturna and Allolobophora icterica) using 2D terraria. Capowiez Y; Bérard A Ecotoxicol Environ Saf; 2006 Jun; 64(2):198-206. PubMed ID: 16406588 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]