BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 18772226)

  • 1. Evidence for lesion bypass by yeast replicative DNA polymerases during DNA damage.
    Sabouri N; Viberg J; Goyal DK; Johansson E; Chabes A
    Nucleic Acids Res; 2008 Oct; 36(17):5660-7. PubMed ID: 18772226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Translesion synthesis of abasic sites by yeast DNA polymerase epsilon.
    Sabouri N; Johansson E
    J Biol Chem; 2009 Nov; 284(46):31555-63. PubMed ID: 19776424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of efficient and accurate nucleotide incorporation opposite 7,8-dihydro-8-oxoguanine by Saccharomyces cerevisiae DNA polymerase eta.
    Carlson KD; Washington MT
    Mol Cell Biol; 2005 Mar; 25(6):2169-76. PubMed ID: 15743815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nucleotide incorporation against 7,8-dihydro-8-oxoguanine is influenced by neighboring base sequences in TLS DNA polymerase reaction.
    Yung C; Suzuki T; Okugawa Y; Kawakami A; Loakes D; Negishi K; Negishi T
    Nucleic Acids Symp Ser (Oxf); 2007; (51):49-50. PubMed ID: 18029580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Survival of DNA damage in yeast directly depends on increased dNTP levels allowed by relaxed feedback inhibition of ribonucleotide reductase.
    Chabes A; Georgieva B; Domkin V; Zhao X; Rothstein R; Thelander L
    Cell; 2003 Feb; 112(3):391-401. PubMed ID: 12581528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ribonucleotide incorporation by yeast DNA polymerase ζ.
    Makarova AV; Nick McElhinny SA; Watts BE; Kunkel TA; Burgers PM
    DNA Repair (Amst); 2014 Jun; 18():63-7. PubMed ID: 24674899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Yeast DNA polymerase ζ maintains consistent activity and mutagenicity across a wide range of physiological dNTP concentrations.
    Kochenova OV; Bezalel-Buch R; Tran P; Makarova AV; Chabes A; Burgers PM; Shcherbakova PV
    Nucleic Acids Res; 2017 Feb; 45(3):1200-1218. PubMed ID: 28180291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of pathways controlling DNA damage induced mutation in Saccharomyces cerevisiae.
    Lis ET; O'Neill BM; Gil-Lamaignere C; Chin JK; Romesberg FE
    DNA Repair (Amst); 2008 May; 7(5):801-10. PubMed ID: 18400565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A genetic screen pinpoints ribonucleotide reductase residues that sustain dNTP homeostasis and specifies a highly mutagenic type of dNTP imbalance.
    Schmidt TT; Sharma S; Reyes GX; Gries K; Gross M; Zhao B; Yuan JH; Wade R; Chabes A; Hombauer H
    Nucleic Acids Res; 2019 Jan; 47(1):237-252. PubMed ID: 30462295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic analysis of bypass of abasic site by the catalytic core of yeast DNA polymerase eta.
    Yang J; Wang R; Liu B; Xue Q; Zhong M; Zeng H; Zhang H
    Mutat Res; 2015 Sep; 779():134-43. PubMed ID: 26203649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Next-Generation Sequencing-Based Analysis of the Roles of DNA Polymerases ν and θ in the Replicative Bypass of 8-Oxo-7,8-dihydroguanine in Human Cells.
    Liu Y; Zhu X; Wang Z; Dai X; You C
    ACS Chem Biol; 2022 Aug; 17(8):2315-2319. PubMed ID: 35815634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of neighbouring base sequences on the mutagenesis induced by 7,8-dihydro-8-oxoguanine in yeast.
    Yung CW; Okugawa Y; Otsuka C; Okamoto K; Arimoto S; Loakes D; Negishi K; Negishi T
    Mutagenesis; 2008 Nov; 23(6):509-13. PubMed ID: 18765421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Replication of ribonucleotide-containing DNA templates by yeast replicative polymerases.
    Watt DL; Johansson E; Burgers PM; Kunkel TA
    DNA Repair (Amst); 2011 Aug; 10(8):897-902. PubMed ID: 21703943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Palm mutants in DNA polymerases alpha and eta alter DNA replication fidelity and translesion activity.
    Niimi A; Limsirichaikul S; Yoshida S; Iwai S; Masutani C; Hanaoka F; Kool ET; Nishiyama Y; Suzuki M
    Mol Cell Biol; 2004 Apr; 24(7):2734-46. PubMed ID: 15024063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Yeast DNA polymerase zeta is an efficient extender of primer ends opposite from 7,8-dihydro-8-Oxoguanine and O6-methylguanine.
    Haracska L; Prakash S; Prakash L
    Mol Cell Biol; 2003 Feb; 23(4):1453-9. PubMed ID: 12556503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient and accurate replication in the presence of 7,8-dihydro-8-oxoguanine by DNA polymerase eta.
    Haracska L; Yu SL; Johnson RE; Prakash L; Prakash S
    Nat Genet; 2000 Aug; 25(4):458-61. PubMed ID: 10932195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of Small Mitochondrial DNA Replicative Advantage by Ribonucleotide Reductase in
    Bradshaw E; Yoshida M; Ling F
    G3 (Bethesda); 2017 Sep; 7(9):3083-3090. PubMed ID: 28717049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic analysis of bypass of O(6)- methylguanine by the catalytic core of yeast DNA polymerase eta.
    Liu B; Xue Q; Gu S; Wang W; Chen J; Li Y; Wang C; Zhang H
    Arch Biochem Biophys; 2016 Apr; 596():99-107. PubMed ID: 26976707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic basis for the differing response to an oxidative lesion by a replicative and a lesion bypass DNA polymerase from Sulfolobus solfataricus.
    Maxwell BA; Suo Z
    Biochemistry; 2012 Apr; 51(16):3485-96. PubMed ID: 22471521
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly mutagenic and severely imbalanced dNTP pools can escape detection by the S-phase checkpoint.
    Kumar D; Viberg J; Nilsson AK; Chabes A
    Nucleic Acids Res; 2010 Jul; 38(12):3975-83. PubMed ID: 20215435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.