These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

452 related articles for article (PubMed ID: 18772283)

  • 1. Methods for sampling of airborne viruses.
    Verreault D; Moineau S; Duchaine C
    Microbiol Mol Biol Rev; 2008 Sep; 72(3):413-44. PubMed ID: 18772283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Collection, particle sizing and detection of airborne viruses.
    Pan M; Lednicky JA; Wu CY
    J Appl Microbiol; 2019 Dec; 127(6):1596-1611. PubMed ID: 30974505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sampling methodologies and dosage assessment techniques for submicrometre and ultrafine virus aerosol particles.
    Hogan CJ; Kettleson EM; Lee MH; Ramaswami B; Angenent LT; Biswas P
    J Appl Microbiol; 2005; 99(6):1422-34. PubMed ID: 16313415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of samplers collecting airborne influenza viruses: 1. Primarily impingers and cyclones.
    Raynor PC; Adesina A; Aboubakr HA; Yang M; Torremorell M; Goyal SM
    PLoS One; 2021; 16(1):e0244977. PubMed ID: 33507951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Airborne influenza virus detection with four aerosol samplers using molecular and infectivity assays: considerations for a new infectious virus aerosol sampler.
    Fabian P; McDevitt JJ; Houseman EA; Milton DK
    Indoor Air; 2009 Oct; 19(5):433-41. PubMed ID: 19689447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimal environmental sampling conditions for electrostatic aerosol-to-hydrosol collection of airborne viruses.
    Piri A; Massoudifarid M; Hwang J
    J Hazard Mater; 2024 Oct; 478():135491. PubMed ID: 39182291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of viruses in used ventilation filters from two large public buildings.
    Goyal SM; Anantharaman S; Ramakrishnan MA; Sajja S; Kim SW; Stanley NJ; Farnsworth JE; Kuehn TH; Raynor PC
    Am J Infect Control; 2011 Sep; 39(7):e30-8. PubMed ID: 21549446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidics-based condensation bioaerosol sampler for multipoint airborne virus monitoring.
    Yoo SJ; Oh J; Hong SJ; Kim MG; Hwang J; Kim YJ
    Biosens Bioelectron; 2024 Nov; 264():116658. PubMed ID: 39137520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance of personal inhalable aerosol samplers in very slowly moving air when facing the aerosol source.
    Witschger O; Grinshpun SA; Fauvel S; Basso G
    Ann Occup Hyg; 2004 Jun; 48(4):351-68. PubMed ID: 15191944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioaerosol Sampler Choice Should Consider Efficiency and Ability of Samplers To Cover Microbial Diversity.
    Mbareche H; Veillette M; Bilodeau GJ; Duchaine C
    Appl Environ Microbiol; 2018 Dec; 84(23):. PubMed ID: 30217848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sampling and detection of airborne influenza virus towards point-of-care applications.
    Ladhani L; Pardon G; Meeuws H; van Wesenbeeck L; Schmidt K; Stuyver L; van der Wijngaart W
    PLoS One; 2017; 12(3):e0174314. PubMed ID: 28350811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of air samplers and filter materials for collection and recovery of airborne norovirus.
    Uhrbrand K; Koponen IK; Schultz AC; Madsen AM
    J Appl Microbiol; 2018 Apr; 124(4):990-1000. PubMed ID: 28921812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aspiration and sampling efficiencies of the TSP and louvered particulate matter inlets.
    Kenny L; Beaumont G; Gudmundsson A; Thorpe A; Koch W
    J Environ Monit; 2005 May; 7(5):481-7. PubMed ID: 15877170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human viral pathogens are pervasive in wastewater treatment center aerosols.
    Brisebois E; Veillette M; Dion-Dupont V; Lavoie J; Corbeil J; Culley A; Duchaine C
    J Environ Sci (China); 2018 May; 67():45-53. PubMed ID: 29778173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient measurement of airborne viable viruses using the growth-based virus aerosol concentrator with high flow velocities.
    Jang J; Bhardwaj J; Jang J
    J Hazard Mater; 2022 Jul; 434():128873. PubMed ID: 35427967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of the sampling efficiencies of a range of atmosphere samplers when collecting polymeric diphenylmethane di-isocyanate (MDI) aerosols.
    Hext PM; Booth K; Dharmarajan V; Karoly WJ; Parekh PP; Spence M
    Appl Occup Environ Hyg; 2003 May; 18(5):346-57. PubMed ID: 12746078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laboratory study of selected personal inhalable aerosol samplers.
    Görner P; Simon X; Wrobel R; Kauffer E; Witschger O
    Ann Occup Hyg; 2010 Mar; 54(2):165-87. PubMed ID: 20147627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An integrated system of air sampling and simultaneous enrichment for rapid biosensing of airborne coronavirus and influenza virus.
    Kim HR; An S; Hwang J
    Biosens Bioelectron; 2020 Dec; 170():112656. PubMed ID: 33010706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physical collection efficiency of filter materials for bacteria and viruses.
    Burton NC; Grinshpun SA; Reponen T
    Ann Occup Hyg; 2007 Mar; 51(2):143-51. PubMed ID: 17041245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Field evaluation of nanofilm detectors for measuring acidic particles in indoor and outdoor air.
    Cohen BS; Heikkinen MS; Hazi Y; Gao H; Peters P; Lippmann M
    Res Rep Health Eff Inst; 2004 Sep; (121):1-35; discussion 37-46. PubMed ID: 15553489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.