BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

364 related articles for article (PubMed ID: 18772288)

  • 21. Increased mistranslation protects E. coli from protein misfolding stress due to activation of a RpoS-dependent heat shock response.
    Evans CR; Fan Y; Ling J
    FEBS Lett; 2019 Nov; 593(22):3220-3227. PubMed ID: 31419308
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Novel SRP Recognition Sequence in the Homeostatic Control Region of Heat Shock Transcription Factor σ32.
    Miyazaki R; Yura T; Suzuki T; Dohmae N; Mori H; Akiyama Y
    Sci Rep; 2016 Apr; 6():24147. PubMed ID: 27052372
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulation of the heat shock response in Escherichia coli: history and perspectives.
    Yura T
    Genes Genet Syst; 2019 Jul; 94(3):103-108. PubMed ID: 31281142
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chaperone Hsp31 contributes to acid resistance in stationary-phase Escherichia coli.
    Mujacic M; Baneyx F
    Appl Environ Microbiol; 2007 Feb; 73(3):1014-8. PubMed ID: 17158627
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The DnaK chaperone modulates the heat shock response of Escherichia coli by binding to the sigma 32 transcription factor.
    Liberek K; Galitski TP; Zylicz M; Georgopoulos C
    Proc Natl Acad Sci U S A; 1992 Apr; 89(8):3516-20. PubMed ID: 1565647
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Co-expression of a heat shock transcription factor to improve conformational quality of recombinant protein in Escherichia coli.
    Hsu SY; Lin YS; Li SJ; Lee WC
    J Biosci Bioeng; 2014 Sep; 118(3):242-8. PubMed ID: 24656305
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Levels of DnaK and DnaJ provide tight control of heat shock gene expression and protein repair in Escherichia coli.
    Tomoyasu T; Ogura T; Tatsuta T; Bukau B
    Mol Microbiol; 1998 Nov; 30(3):567-81. PubMed ID: 9822822
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Region C of the Escherichia coli heat shock sigma factor RpoH (sigma 32) contains a turnover element for proteolysis by the FtsH protease.
    Obrist M; Langklotz S; Milek S; Führer F; Narberhaus F
    FEMS Microbiol Lett; 2009 Jan; 290(2):199-208. PubMed ID: 19025566
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Roles of heat-shock chaperones in the production of recombinant proteins in Escherichia coli.
    Hoffmann F; Rinas U
    Adv Biochem Eng Biotechnol; 2004; 89():143-61. PubMed ID: 15217158
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Classic Spotlight: the Heat Shock Response and the Discovery of Alternative Sigma Factors in Escherichia coli.
    Gourse RL
    J Bacteriol; 2016 Oct; 198(19):2550. PubMed ID: 27613860
    [No Abstract]   [Full Text] [Related]  

  • 31. Substitution of a highly conserved histidine in the Escherichia coli heat shock transcription factor, sigma32, affects promoter utilization in vitro and leads to overexpression of the biofilm-associated flu protein in vivo.
    Kourennaia OV; Dehaseth PL
    J Bacteriol; 2007 Dec; 189(23):8430-6. PubMed ID: 17921304
    [TBL] [Abstract][Full Text] [Related]  

  • 32. YrhB is a highly stable small protein with unique chaperone-like activity in Escherichia coli BL21(DE3).
    Ahn KY; Park JS; Han KY; Song JA; Lee J
    FEBS Lett; 2012 Apr; 586(7):1044-8. PubMed ID: 22569261
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Growth Phase-Dependent Chromosome Condensation and Heat-Stable Nucleoid-Structuring Protein Redistribution in Escherichia coli under Osmotic Stress.
    Rafiei N; Cordova M; Navarre WW; Milstein JN
    J Bacteriol; 2019 Dec; 201(23):. PubMed ID: 31481544
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Temperature-dependent proteolysis as a control element in Escherichia coli metabolism.
    Katz C; Rasouly A; Gur E; Shenhar Y; Biran D; Ron EZ
    Res Microbiol; 2009 Nov; 160(9):684-6. PubMed ID: 19770038
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Conformational adaptation in the E. coli sigma 32 protein in response to heat shock.
    Chakraborty A; Mukherjee S; Chattopadhyay R; Roy S; Chakrabarti S
    J Phys Chem B; 2014 May; 118(18):4793-802. PubMed ID: 24766146
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stress-induced expression of the Escherichia coli phage shock protein operon is dependent on sigma 54 and modulated by positive and negative feedback mechanisms.
    Weiner L; Brissette JL; Model P
    Genes Dev; 1991 Oct; 5(10):1912-23. PubMed ID: 1717346
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regulation and conservation of the heat-shock transcription factor sigma32.
    Yura T
    Genes Cells; 1996 Mar; 1(3):277-84. PubMed ID: 9133661
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Proteolysis in the Escherichia coli heat shock response: a player at many levels.
    Meyer AS; Baker TA
    Curr Opin Microbiol; 2011 Apr; 14(2):194-9. PubMed ID: 21353626
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Regulation of Escherichia coli heat shock response].
    Liberek K
    Postepy Biochem; 1995; 41(2):94-102. PubMed ID: 7479445
    [No Abstract]   [Full Text] [Related]  

  • 40. GroEL to DnaK chaperone network behind the stability modulation of σ(32) at physiological temperature in Escherichia coli.
    Patra M; Roy SS; Dasgupta R; Basu T
    FEBS Lett; 2015 Dec; 589(24 Pt B):4047-52. PubMed ID: 26545493
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.