These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 18772527)

  • 1. Molecular mechanisms underlying the transition of cardiac hypertrophy to heart failure.
    Oka T; Komuro I
    Circ J; 2008; 72 Suppl A():A13-6. PubMed ID: 18772527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Molecular mechanisms of congestive heart failure].
    Shiojima I; Komuro I
    Nihon Rinsho; 2006 May; 64(5):826-31. PubMed ID: 16689360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multifarious molecular signaling cascades of cardiac hypertrophy: can the muddy waters be cleared?
    Balakumar P; Jagadeesh G
    Pharmacol Res; 2010 Nov; 62(5):365-83. PubMed ID: 20643208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of Cardiac Transcription Factor GATA4 by Post-Translational Modification in Cardiomyocyte Hypertrophy and Heart Failure.
    Katanasaka Y; Suzuki H; Sunagawa Y; Hasegawa K; Morimoto T
    Int Heart J; 2016 Dec; 57(6):672-675. PubMed ID: 27818483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Angiogenesis and cardiac hypertrophy: maintenance of cardiac function and causative roles in heart failure.
    Oka T; Akazawa H; Naito AT; Komuro I
    Circ Res; 2014 Jan; 114(3):565-71. PubMed ID: 24481846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Myocardial cell death and regeneration during progression of cardiac hypertrophy to heart failure.
    Sarkar S; Chawla-Sarkar M; Young D; Nishiyama K; Rayborn ME; Hollyfield JG; Sen S
    J Biol Chem; 2004 Dec; 279(50):52630-42. PubMed ID: 15385543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decompensation of cardiac hypertrophy: cellular mechanisms and novel therapeutic targets.
    Diwan A; Dorn GW
    Physiology (Bethesda); 2007 Feb; 22():56-64. PubMed ID: 17289931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functions of autophagy in pathological cardiac hypertrophy.
    Li Z; Wang J; Yang X
    Int J Biol Sci; 2015; 11(6):672-8. PubMed ID: 25999790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Progression from compensated hypertrophy to failure in the pressure-overloaded human heart: structural deterioration and compensatory mechanisms.
    Hein S; Arnon E; Kostin S; Schönburg M; Elsässer A; Polyakova V; Bauer EP; Klövekorn WP; Schaper J
    Circulation; 2003 Feb; 107(7):984-91. PubMed ID: 12600911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pathophysiology of cardiac hypertrophy and heart failure: signaling pathways and novel therapeutic targets.
    Tham YK; Bernardo BC; Ooi JY; Weeks KL; McMullen JR
    Arch Toxicol; 2015 Sep; 89(9):1401-38. PubMed ID: 25708889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Review of the Molecular Mechanisms Underlying the Development and Progression of Cardiac Remodeling.
    Schirone L; Forte M; Palmerio S; Yee D; Nocella C; Angelini F; Pagano F; Schiavon S; Bordin A; Carrizzo A; Vecchione C; Valenti V; Chimenti I; De Falco E; Sciarretta S; Frati G
    Oxid Med Cell Longev; 2017; 2017():3920195. PubMed ID: 28751931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of Fas in the progression of ischemic heart failure: prohypertrophy or proapoptosis.
    Feng QZ; Zhao YS; Abdelwahid E
    Coron Artery Dis; 2008 Nov; 19(7):527-34. PubMed ID: 18923250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Autophagy during cardiac remodeling.
    Nishida K; Otsu K
    J Mol Cell Cardiol; 2016 Jun; 95():11-8. PubMed ID: 26678624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell death, tissue hypoxia and the progression of heart failure.
    Sabbah HN; Sharov VG; Goldstein S
    Heart Fail Rev; 2000 Jun; 5(2):131-8. PubMed ID: 16228140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Celiprolol, a vasodilatory beta-blocker, inhibits pressure overload-induced cardiac hypertrophy and prevents the transition to heart failure via nitric oxide-dependent mechanisms in mice.
    Liao Y; Asakura M; Takashima S; Ogai A; Asano Y; Shintani Y; Minamino T; Asanuma H; Sanada S; Kim J; Kitamura S; Tomoike H; Hori M; Kitakaze M
    Circulation; 2004 Aug; 110(6):692-9. PubMed ID: 15262839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [From myocardial hypertrophy to heart failure: role of the interstitium].
    Barsotti A; Dini FL; Nardini V; Di Muzio M; Gallina S; Di Napoli P; Calafiore AM; Trevi G
    Cardiologia; 1993 Dec; 38(12 Suppl 1):67-77. PubMed ID: 8020050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinct changes of myocyte autophagy during myocardial hypertrophy and heart failure: association with oxidative stress.
    Li B; Chi RF; Qin FZ; Guo XF
    Exp Physiol; 2016 Aug; 101(8):1050-63. PubMed ID: 27219474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Apoptotic and non-apoptotic programmed cardiomyocyte death in ventricular remodelling.
    Dorn GW
    Cardiovasc Res; 2009 Feb; 81(3):465-73. PubMed ID: 18779231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Programmed cell death in cardiac myocytes: strategies to maximize post-ischemic salvage.
    Mani K
    Heart Fail Rev; 2008 Jun; 13(2):193-209. PubMed ID: 18176842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The alteration of protein prenylation induces cardiomyocyte hypertrophy through Rheb-mTORC1 signalling and leads to chronic heart failure.
    Xu N; Guan S; Chen Z; Yu Y; Xie J; Pan FY; Zhao NW; Liu L; Yang ZZ; Gao X; Xu B; Li CJ
    J Pathol; 2015 Apr; 235(5):672-85. PubMed ID: 25385233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.