BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 18772866)

  • 1. Semiautomated and rapid quantification of nucleic acid footprinting and structure mapping experiments.
    Laederach A; Das R; Vicens Q; Pearlman SM; Brenowitz M; Herschlag D; Altman RB
    Nat Protoc; 2008; 3(9):1395-401. PubMed ID: 18772866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SAFA: semi-automated footprinting analysis software for high-throughput quantification of nucleic acid footprinting experiments.
    Das R; Laederach A; Pearlman SM; Herschlag D; Altman RB
    RNA; 2005 Mar; 11(3):344-54. PubMed ID: 15701734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid quantification and analysis of kinetic •OH radical footprinting data using SAFA.
    Simmons K; Martin JS; Shcherbakova I; Laederach A
    Methods Enzymol; 2009; 468():47-66. PubMed ID: 20946764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-throughput single-nucleotide structural mapping by capillary automated footprinting analysis.
    Mitra S; Shcherbakova IV; Altman RB; Brenowitz M; Laederach A
    Nucleic Acids Res; 2008 Jun; 36(11):e63. PubMed ID: 18477638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Semi-automated, single-band peak-fitting analysis of hydroxyl radical nucleic acid footprint autoradiograms for the quantitative analysis of transitions.
    Takamoto K; Chance MR; Brenowitz M
    Nucleic Acids Res; 2004 Aug; 32(15):E119. PubMed ID: 15319447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural interpretation of DNA-protein hydroxyl-radical footprinting experiments with high resolution using HYDROID.
    Shaytan AK; Xiao H; Armeev GA; Gaykalova DA; Komarova GA; Wu C; Studitsky VM; Landsman D; Panchenko AR
    Nat Protoc; 2018 Nov; 13(11):2535-2556. PubMed ID: 30341436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. System for accurate one-dimensional gel analysis including high-resolution quantitative footprinting.
    Smith J; Singh M
    Biotechniques; 1996 Jun; 20(6):1082-7. PubMed ID: 8780878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Footprinting protein-DNA complexes using the hydroxyl radical.
    Jain SS; Tullius TD
    Nat Protoc; 2008; 3(6):1092-1100. PubMed ID: 18546600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic DNA Diagnosis for 1D Gel Electrophoresis Images using Bio-image Processing Technique.
    Intarapanich A; Kaewkamnerd S; Shaw PJ; Ukosakit K; Tragoonrung S; Tongsima S
    BMC Genomics; 2015; 16 Suppl 12(Suppl 12):S15. PubMed ID: 26681167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing the structural dynamics of nucleic acids by quantitative time-resolved and equilibrium hydroxyl radical "footprinting".
    Brenowitz M; Chance MR; Dhavan G; Takamoto K
    Curr Opin Struct Biol; 2002 Oct; 12(5):648-53. PubMed ID: 12464318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Beamline X28C of the Center for Synchrotron Biosciences: a national resource for biomolecular structure and dynamics experiments using synchrotron footprinting.
    Gupta S; Sullivan M; Toomey J; Kiselar J; Chance MR
    J Synchrotron Radiat; 2007 May; 14(Pt 3):233-43. PubMed ID: 17435298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-resolved hydroxyl-radical footprinting of RNA using Fe(II)-EDTA.
    Hampel KJ; Burke JM
    Methods; 2001 Mar; 23(3):233-9. PubMed ID: 11243836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring structural changes in nucleic acids with single residue spatial and millisecond time resolution by quantitative hydroxyl radical footprinting.
    Shcherbakova I; Brenowitz M
    Nat Protoc; 2008; 3(2):288-302. PubMed ID: 18274531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleic acid fragmentation on the millisecond timescale using a conventional X-ray rotating anode source: application to protein-DNA footprinting.
    Henn A; Halfon J; Kela I; Orion I; Sagi I
    Nucleic Acids Res; 2001 Dec; 29(24):E122. PubMed ID: 11812859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visualising DNA: footprinting and 1-2D gels.
    Urbach AR; Waring MJ
    Mol Biosyst; 2005 Oct; 1(4):287-93. PubMed ID: 16880993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo footprinting of the interaction of proteins with DNA and RNA.
    Grange T; Bertrand E; Espinás ML; Fromont-Racine M; Rigaud G; Roux J; Pictet R
    Methods; 1997 Feb; 11(2):151-63. PubMed ID: 8993027
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative analysis of multiple-hit footprinting studies to characterize DNA conformational changes in protein-DNA complexes: application to DNA opening by Esigma70 RNA polymerase.
    Tsodikov OV; Craig ML; Saecker RM; Record MT
    J Mol Biol; 1998 Nov; 283(4):757-69. PubMed ID: 9790838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative comparison and evaluation of two commercially available, two-dimensional electrophoresis image analysis software packages, Z3 and Melanie.
    Raman B; Cheung A; Marten MR
    Electrophoresis; 2002 Jul; 23(14):2194-202. PubMed ID: 12210223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydroxyl-radical footprinting combined with molecular modeling identifies unique features of DNA conformation and nucleosome positioning.
    Shaytan AK; Xiao H; Armeev GA; Wu C; Landsman D; Panchenko AR
    Nucleic Acids Res; 2017 Sep; 45(16):9229-9243. PubMed ID: 28934480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A method to accurately quantitate intensities of (32)P-DNA bands when multiple bands appear in a single lane of a gel is used to study dNTP insertion opposite a benzo[a]pyrene-dG adduct by Sulfolobus DNA polymerases Dpo4 and Dbh.
    Sholder G; Loechler EL
    DNA Repair (Amst); 2015 Jan; 25():97-103. PubMed ID: 25497330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.