These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 18772916)
21. Surface-enhanced Raman scattering of DNA bases using frozen silver nanoparticle dispersion as a platform. Fukunaga Y; Harada M; Okada T Mikrochim Acta; 2021 Nov; 188(11):406. PubMed ID: 34734344 [TBL] [Abstract][Full Text] [Related]
22. Nanoparticle assembly for sensitive DNA detection using SERRS. McKeating KS; Dougan JA; Faulds K Biochem Soc Trans; 2012 Aug; 40(4):597-602. PubMed ID: 22817701 [TBL] [Abstract][Full Text] [Related]
23. Surface-enhanced Raman scattering imaging using noble metal nanoparticles. Wilson AJ; Willets KA Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2013; 5(2):180-9. PubMed ID: 23335562 [TBL] [Abstract][Full Text] [Related]
24. Silver nanoparticle thin films with nanocavities for surface-enhanced Raman scattering. Kahraman M; Tokman N; Culha M Chemphyschem; 2008 Apr; 9(6):902-10. PubMed ID: 18366038 [TBL] [Abstract][Full Text] [Related]
25. An investigation of the surface-enhanced Raman scattering (SERS) effect from a new substrate of silver-modified silver electrode. Wen R; Fang Y J Colloid Interface Sci; 2005 Dec; 292(2):469-75. PubMed ID: 16051260 [TBL] [Abstract][Full Text] [Related]
26. Silver-nanoparticle-based surface-enhanced Raman scattering wiper for the detection of dye adulteration of medicinal herbs. Li D; Zhu Q; Lv D; Zheng B; Liu Y; Chai Y; Lu F Anal Bioanal Chem; 2015 Aug; 407(20):6031-9. PubMed ID: 26044737 [TBL] [Abstract][Full Text] [Related]
27. Polyhedral silver mesocages for single particle surface-enhanced Raman scattering-based biosensor. Fang J; Liu S; Li Z Biomaterials; 2011 Jul; 32(21):4877-84. PubMed ID: 21492933 [TBL] [Abstract][Full Text] [Related]
28. High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate. Lu Y; Liu GL; Lee LP Nano Lett; 2005 Jan; 5(1):5-9. PubMed ID: 15792403 [TBL] [Abstract][Full Text] [Related]
29. Quantitative enhanced Raman scattering of labeled DNA from gold and silver nanoparticles. Stokes RJ; Macaskill A; Lundahl PJ; Smith WE; Faulds K; Graham D Small; 2007 Sep; 3(9):1593-601. PubMed ID: 17647254 [TBL] [Abstract][Full Text] [Related]
30. Surpassingly competitive electromagnetic field enhancement at the silica/silver interface for selective intracellular surface enhanced Raman scattering detection. Radziuk D; Möhwald H ACS Nano; 2015 Mar; 9(3):2820-35. PubMed ID: 25704061 [TBL] [Abstract][Full Text] [Related]
31. [The study of adsorption of L-aspartic acid on silver sol by surface-enhanced Raman scattering]. Zhu ZL; Gao JY; Li FT; Zhang BR Guang Pu Xue Yu Guang Pu Fen Xi; 2004 Jan; 24(1):68-70. PubMed ID: 15768979 [TBL] [Abstract][Full Text] [Related]
32. Meditating metal coenhanced fluorescence and SERS around gold nanoaggregates in nanosphere as bifunctional biosensor for multiple DNA targets. Liu Y; Wu P ACS Appl Mater Interfaces; 2013 Jun; 5(12):5832-44. PubMed ID: 23734937 [TBL] [Abstract][Full Text] [Related]
33. Synthesis of anti-aggregation silver nanoparticles based on inositol hexakisphosphoric micelles for a stable surface enhanced Raman scattering substrate. Wang N; Yang HF; Zhu X; Zhang R; Wang Y; Huang GF; Zhang ZR Nanotechnology; 2009 Aug; 20(31):315603. PubMed ID: 19597257 [TBL] [Abstract][Full Text] [Related]
34. Detection of SERS active labelled DNA based on surface affinity to silver nanoparticles. Harper MM; Dougan JA; Shand NC; Graham D; Faulds K Analyst; 2012 May; 137(9):2063-8. PubMed ID: 22434199 [TBL] [Abstract][Full Text] [Related]
35. Surface-enhanced Raman scattering plasmonic enhancement using DNA origami-based complex metallic nanostructures. Pilo-Pais M; Watson A; Demers S; LaBean TH; Finkelstein G Nano Lett; 2014; 14(4):2099-104. PubMed ID: 24645937 [TBL] [Abstract][Full Text] [Related]
36. Increasing surface enhanced Raman spectroscopy effect of RNA and DNA components by changing the pH of silver colloidal suspensions. Primera-Pedrozo OM; Rodríguez Gdel M; Castellanos J; Felix-Rivera H; Resto O; Hernández-Rivera SP Spectrochim Acta A Mol Biomol Spectrosc; 2012 Feb; 87():77-85. PubMed ID: 22169024 [TBL] [Abstract][Full Text] [Related]
37. Aggregation effects of gold nanoparticles for single-base mismatch detection in influenza A (H1N1) DNA sequences using fluorescence and Raman measurements. Ganbold EO; Kang T; Lee K; Lee SY; Joo SW Colloids Surf B Biointerfaces; 2012 May; 93():148-53. PubMed ID: 22261178 [TBL] [Abstract][Full Text] [Related]
38. Surface-enhanced Raman spectroscopy for facile DNA detection using gold nanoparticle aggregates formed via photoligation. Thuy NT; Yokogawa R; Yoshimura Y; Fujimoto K; Koyano M; Maenosono S Analyst; 2010 Mar; 135(3):595-602. PubMed ID: 20174716 [TBL] [Abstract][Full Text] [Related]
39. Highly sensitive surface-enhanced Raman scattering sensing of heparin based on antiaggregation of functionalized silver nanoparticles. Wang X; Chen L; Fu X; Chen L; Ding Y ACS Appl Mater Interfaces; 2013 Nov; 5(21):11059-65. PubMed ID: 24107222 [TBL] [Abstract][Full Text] [Related]
40. Positively charged silver nanoparticles and their effect on surface-enhanced Raman scattering of dye-labelled oligonucleotides. van Lierop D; Krpetić Ž; Guerrini L; Larmour IA; Dougan JA; Faulds K; Graham D Chem Commun (Camb); 2012 Aug; 48(66):8192-4. PubMed ID: 22544041 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]