These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 18772954)
1. Development of Triticum turgidum subsp. durum--Aegilops longissima amphiploids with high iron and zinc content through unreduced gamete formation in F1 hybrids. Tiwari VK; Rawat N; Neelam K; Randhawa GS; Singh K; Chhuneja P; Dhaliwal HS Genome; 2008 Sep; 51(9):757-66. PubMed ID: 18772954 [TBL] [Abstract][Full Text] [Related]
2. Unreduced gamete formation in wheat × Aegilops spp. hybrids is genotype specific and prevented by shared homologous subgenomes. Fakhri Z; Mirzaghaderi G; Ahmadian S; Mason AS Plant Cell Rep; 2016 May; 35(5):1143-54. PubMed ID: 26883221 [TBL] [Abstract][Full Text] [Related]
3. Durum wheat as a candidate for the unknown female progenitor of bread wheat: an empirical study with a highly fertile F1 hybrid with Aegilops tauschii Coss. Matsuoka Y; Nasuda S Theor Appl Genet; 2004 Nov; 109(8):1710-7. PubMed ID: 15448900 [TBL] [Abstract][Full Text] [Related]
4. Production of aneuhaploid and euhaploid sporocytes by meiotic restitution in fertile hybrids between durum wheat Langdon chromosome substitution lines and Aegilops tauschii. Zhang L; Chen Q; Yuan Z; Xiang Z; Zheng Y; Liu D J Genet Genomics; 2008 Oct; 35(10):617-23. PubMed ID: 18937918 [TBL] [Abstract][Full Text] [Related]
5. Development and molecular characterization of wheat--Aegilops kotschyi addition and substitution lines with high grain protein, iron, and zinc. Rawat N; Neelam K; Tiwari VK; Randhawa GS; Friebe B; Gill BS; Dhaliwal HS Genome; 2011 Nov; 54(11):943-53. PubMed ID: 22067038 [TBL] [Abstract][Full Text] [Related]
6. Transfer of useful variability of high grain iron and zinc from Aegilops kotschyi into wheat through seed irradiation approach. Verma SK; Kumar S; Sheikh I; Malik S; Mathpal P; Chugh V; Kumar S; Prasad R; Dhaliwal HS Int J Radiat Biol; 2016; 92(3):132-9. PubMed ID: 26883304 [TBL] [Abstract][Full Text] [Related]
7. Chromosome stability of synthetic Triticum turgidum-Aegilops umbellulata hybrids. Song Z; Zuo Y; Li W; Dai S; Liu G; Pu Z; Yan Z BMC Plant Biol; 2024 May; 24(1):391. PubMed ID: 38735929 [TBL] [Abstract][Full Text] [Related]
8. Substitutions of 2S and 7U chromosomes of Aegilops kotschyi in wheat enhance grain iron and zinc concentration. Tiwari VK; Rawat N; Neelam K; Kumar S; Randhawa GS; Dhaliwal HS Theor Appl Genet; 2010 Jul; 121(2):259-69. PubMed ID: 20221581 [TBL] [Abstract][Full Text] [Related]
9. [Hybrids of Aegilops cylindrica Host with Triticum durum Desf. and T. aestivum L]. Avsenin VI; Motsnyĭ AI; Rybalka AI; Faĭt VI Tsitol Genet; 2003; 37(1):11-7. PubMed ID: 12741056 [TBL] [Abstract][Full Text] [Related]
10. A comparative analysis of chromosome pairing at metaphase I in interspecific hybrids between durum wheat (Triticum turgidum L.) and the most widespread Aegilops species. Cifuentes M; Garcia-Agüero V; Benavente E Cytogenet Genome Res; 2010 Jul; 129(1-3):124-32. PubMed ID: 20551603 [TBL] [Abstract][Full Text] [Related]
11. Random chromosome elimination in synthetic Triticum-Aegilops amphiploids leads to development of a stable partial amphiploid with high grain micro- and macronutrient content and powdery mildew resistance. Tiwari VK; Rawat N; Neelam K; Kumar S; Randhawa GS; Dhaliwal HS Genome; 2010 Dec; 53(12):1053-65. PubMed ID: 21164538 [TBL] [Abstract][Full Text] [Related]
12. Development and characterization of Zuo Y; Xiang Q; Dai S; Song Z; Bao T; Hao M; Zhang L; Liu G; Li J; Liu D; Wei Y; Zheng Y; Yan Z Genome; 2020 May; 63(5):263-273. PubMed ID: 32160479 [No Abstract] [Full Text] [Related]
13. Production of synthetic wheat lines to exploit the genetic diversity of emmer wheat and D genome containing Aegilops species in wheat breeding. Mirzaghaderi G; Abdolmalaki Z; Ebrahimzadegan R; Bahmani F; Orooji F; Majdi M; Mozafari AA Sci Rep; 2020 Nov; 10(1):19698. PubMed ID: 33184344 [TBL] [Abstract][Full Text] [Related]
14. Cytogenetics of Triticum x Dasypyrum hybrids and derived lines. Minelli S; Ceccarelli M; Mariani M; De Pace C; Cionini PG Cytogenet Genome Res; 2005; 109(1-3):385-92. PubMed ID: 15753601 [TBL] [Abstract][Full Text] [Related]
15. Cytological characteristics of F2 hybrids between Triticum aestivum L. and T. durum Desf. with reference to wheat breeding. Wang HY; Liu DC; Yan ZH; Wei YM; Zheng YL J Appl Genet; 2005; 46(4):365-9. PubMed ID: 16278508 [TBL] [Abstract][Full Text] [Related]
16. The Bo1-specific PCR marker AWW5L7 is predictive of boron tolerance status in a range of exotic durum and bread wheats. Schnurbusch T; Langridge P; Sutton T Genome; 2008 Dec; 51(12):963-71. PubMed ID: 19088810 [TBL] [Abstract][Full Text] [Related]
17. Production of intergeneric hybrid between dwarfing polish wheat (Triticum polonicum L.) and Aegilops tauschii Cosson. with reference to wheat origin. Kang HY; Wang Y; Yuan HJ; Jiang Y; Zhou YH Genetika; 2009 Jun; 45(6):766-72. PubMed ID: 19639868 [TBL] [Abstract][Full Text] [Related]
18. Synthesis and cytological characterization of trigeneric hybrids of durum wheat with and without Ph1. Jauhar PP; Doğramaci M; Peterson TS Genome; 2004 Dec; 47(6):1173-81. PubMed ID: 15644976 [TBL] [Abstract][Full Text] [Related]
19. Ph1 gene derived from Aegilops speltoides induces homoeologous chromosome pairing in wide crosses of Triticum aestivum. Aghaee-Sarbarzeh M; Harjit-Singh ; Dhaliwal HS J Hered; 2000; 91(5):417-21. PubMed ID: 10994715 [TBL] [Abstract][Full Text] [Related]
20. Synthesis and characterization of advanced durum wheat hybrids and addition lines with thinopyrum chromosomes. Jauhar PP; Peterson TS J Hered; 2013; 104(3):428-36. PubMed ID: 23396879 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]