These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 18772985)

  • 1. Corneal birefringence mapped by scanning laser polarimetry.
    Knighton RW; Huang XR; Cavuoto LA
    Opt Express; 2008 Sep; 16(18):13738-51. PubMed ID: 18772985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Birefringence of the central cornea in children assessed with scanning laser polarimetry.
    Irsch K; Shah AA
    J Biomed Opt; 2012 Aug; 17(8):086001. PubMed ID: 23224188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scanning laser polarimetry with variable corneal compensation: identification and correction for corneal birefringence in eyes with macular disease.
    Bagga H; Greenfield DS; Knighton RW
    Invest Ophthalmol Vis Sci; 2003 May; 44(5):1969-76. PubMed ID: 12714631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of uncompensated corneal polarization on the detection of localized retinal nerve fiber layer defects.
    Kogure S; Kohwa H; Tsukahara S
    Ophthalmic Res; 2008; 40(2):61-8. PubMed ID: 18230917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polarimetric analysis of the human cornea measured by polarization-sensitive optical coherence tomography.
    Fanjul-Vélez F; Pircher M; Baumann B; Götzinger E; Hitzenberger CK; Arce-Diego JL
    J Biomed Opt; 2010; 15(5):056004. PubMed ID: 21054098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Linear birefringence of the central human cornea.
    Knighton RW; Huang XR
    Invest Ophthalmol Vis Sci; 2002 Jan; 43(1):82-6. PubMed ID: 11773016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optics of the average normal cornea from general and canonical representations of its surface topography.
    Navarro R; González L; Hernández JL
    J Opt Soc Am A Opt Image Sci Vis; 2006 Feb; 23(2):219-32. PubMed ID: 16477826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Corneal birefringence compensation for polarization sensitive optical coherence tomography of the human retina.
    Pircher M; Götzinger E; Baumann B; Hitzenberger CK
    J Biomed Opt; 2007; 12(4):041210. PubMed ID: 17867799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retinal scanning laser polarimetry and methods to compensate for corneal birefringence.
    Zhou Q
    Bull Soc Belge Ophtalmol; 2006; (302):89-106. PubMed ID: 17265792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-function relationship is stronger with enhanced corneal compensation than with variable corneal compensation in scanning laser polarimetry.
    Mai TA; Reus NJ; Lemij HG
    Invest Ophthalmol Vis Sci; 2007 Apr; 48(4):1651-8. PubMed ID: 17389496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predictors of atypical birefringence pattern in scanning laser polarimetry.
    Qiu K; Leung CK; Weinreb RN; Liu S; Chueng CY; Li H; Zhang MZ; Pang CP; Lam DS
    Br J Ophthalmol; 2009 Sep; 93(9):1191-4. PubMed ID: 19416934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The theory and implications of the biaxial model of corneal birefringence.
    Misson GP
    Ophthalmic Physiol Opt; 2010 Nov; 30(6):834-46. PubMed ID: 21205270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of glaucoma using scanning laser polarimetry with enhanced corneal compensation.
    Medeiros FA; Bowd C; Zangwill LM; Patel C; Weinreb RN
    Invest Ophthalmol Vis Sci; 2007 Jul; 48(7):3146-53. PubMed ID: 17591884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Corneal polarimetry after LASIK refractive surgery.
    Bueno JM; Berrio E; Artal P
    J Biomed Opt; 2006; 11(1):014001. PubMed ID: 16526878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of corneal polarization axis on assessment of retinal nerve fiber layer thickness by scanning laser polarimetry.
    Greenfield DS; Knighton RW; Huang XR
    Am J Ophthalmol; 2000 Jun; 129(6):715-22. PubMed ID: 10926978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of enhanced corneal compensation in scanning laser polarimetry: comparison with variable corneal compensation on human eyes undergoing LASIK.
    Tóth M; Holló G
    J Glaucoma; 2006 Feb; 15(1):53-9. PubMed ID: 16378019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence.
    Ghosh N; Wood MF; Vitkin IA
    J Biomed Opt; 2008; 13(4):044036. PubMed ID: 19021363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of atypical birefringence patterns on glaucoma detection using scanning laser polarimetry with variable corneal compensation.
    Bowd C; Medeiros FA; Weinreb RN; Zangwill LM
    Invest Ophthalmol Vis Sci; 2007 Jan; 48(1):223-7. PubMed ID: 17197536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spherical aberration of the anterior and posterior surfaces of the human cornea.
    Sicam VA; Dubbelman M; van der Heijde RG
    J Opt Soc Am A Opt Image Sci Vis; 2006 Mar; 23(3):544-9. PubMed ID: 16539049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Individualized compensation of anterior segment birefringence during scanning laser polarimetry.
    Zhou Q; Weinreb RN
    Invest Ophthalmol Vis Sci; 2002 Jul; 43(7):2221-8. PubMed ID: 12091420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.