These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 18772988)

  • 1. Free-standing THz electromagnetic metamaterials.
    Moser HO; Kong JA; Jian LK; Chen HS; Liu G; Bahou M; Kalaiselvi SM; Maniam SM; Cheng XX; Wu BI; Gu PD; Chen A; Heussler SP; bin Mahmood S; Wen L
    Opt Express; 2008 Sep; 16(18):13773-80. PubMed ID: 18772988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. All-metal self-supported THz metamaterial--the meta-foil.
    Moser HO; Jian LK; Chen HS; Bahou M; Kalaiselvi SM; Virasawmy S; Maniam SM; Cheng XX; Heussler SP; bin Mahmood S; Wu BI
    Opt Express; 2009 Dec; 17(26):23914-9. PubMed ID: 20052102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wire metamaterials: physics and applications.
    Simovski CR; Belov PA; Atrashchenko AV; Kivshar YS
    Adv Mater; 2012 Aug; 24(31):4229-48. PubMed ID: 22760970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Terahertz near-field microscopy of complementary planar metamaterials: Babinet's principle.
    Bitzer A; Ortner A; Merbold H; Feurer T; Walther M
    Opt Express; 2011 Jan; 19(3):2537-45. PubMed ID: 21369073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Planar designs for electromagnetically induced transparency in metamaterials.
    Tassin P; Zhang L; Koschny T; Economou EN; Soukoulis CM
    Opt Express; 2009 Mar; 17(7):5595-605. PubMed ID: 19333327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-loss plasmonic metamaterial based on epitaxial gold monocrystal film.
    Fedotov VA; Uchino T; Ou JY
    Opt Express; 2012 Apr; 20(9):9545-50. PubMed ID: 22535045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid and inexpensive fabrication of terahertz electromagnetic bandgap structures.
    Wu Z; Kinast J; Gehm ME; Xin H
    Opt Express; 2008 Oct; 16(21):16442-51. PubMed ID: 18852750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An efficient way to reduce losses of left-handed metamaterials.
    Zhou J; Koschny T; Soukoulis CM
    Opt Express; 2008 Jul; 16(15):11147-52. PubMed ID: 18648429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction between graphene and metamaterials: split rings vs. wire pairs.
    Zou Y; Tassin P; Koschny T; Soukoulis CM
    Opt Express; 2012 May; 20(11):12198-204. PubMed ID: 22714208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Planar wallpaper group metamaterials for novel terahertz applications.
    Bingham CM; Tao H; Liu X; Averitt RD; Zhang X; Padilla WJ
    Opt Express; 2008 Nov; 16(23):18565-75. PubMed ID: 19581942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Broadband gradient index microwave quasi-optical elements based on non-resonant metamaterials.
    Liu R; Cheng Q; Chin JY; Mock JJ; Cui TJ; Smith DR
    Opt Express; 2009 Nov; 17(23):21030-41. PubMed ID: 19997341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of thin silicon dioxide layers on resonant frequency in infrared metamaterials.
    Shelton DJ; Peters DW; Sinclair MB; Brener I; Warne LK; Basilio LI; Coffey KR; Boreman GD
    Opt Express; 2010 Jan; 18(2):1085-90. PubMed ID: 20173930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A close-ring pair terahertz metamaterial resonating at normal incidence.
    Gu J; Han J; Lu X; Singh R; Tian Z; Xing Q; Zhang W
    Opt Express; 2009 Oct; 17(22):20307-12. PubMed ID: 19997257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonlinear magnetic metamaterials.
    Shadrivov IV; Kozyrev AB; van der Weide DW; Kivshar YS
    Opt Express; 2008 Dec; 16(25):20266-71. PubMed ID: 19065165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electromagnetic dipole coupling mechanism in layered terahertz metamaterials.
    Choi J; Jung H; Lee H; Choi H
    Opt Express; 2013 Jul; 21(14):16975-9. PubMed ID: 23938546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning of superconducting niobium nitride terahertz metamaterials.
    Wu J; Jin B; Xue Y; Zhang C; Dai H; Zhang L; Cao C; Kang L; Xu W; Chen J; Wu P
    Opt Express; 2011 Jun; 19(13):12021-6. PubMed ID: 21716437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interferometric characterization of a sub-wavelength near-infrared negative index metamaterial.
    Zhang X; Davanço M; Maller K; Jarvis TW; Wu C; Fietz C; Korobkin D; Li X; Shvets G; Forrest SR
    Opt Express; 2010 Aug; 18(17):17788-95. PubMed ID: 20721166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-peak electromagnetically induced transparency (EIT)-like transmission from bull's-eye-shaped metamaterial.
    Kim J; Soref R; Buchwald WR
    Opt Express; 2010 Aug; 18(17):17997-8002. PubMed ID: 20721186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical properties of metal-dielectric-metal microcavities in the THz frequency range.
    Todorov Y; Tosetto L; Teissier J; Andrews AM; Klang P; Colombelli R; Sagnes I; Strasser G; Sirtori C
    Opt Express; 2010 Jun; 18(13):13886-907. PubMed ID: 20588522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Terahertz metamaterials with semiconductor split-ring resonators for magnetostatic tunability.
    Han J; Lakhtakia A; Qiu CW
    Opt Express; 2008 Sep; 16(19):14390-6. PubMed ID: 18794974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.