BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 18773467)

  • 1. The effects of total hip arthroplasty on the structural and biomechanical properties of adult bone.
    Peck JJ; Stout SD
    Am J Phys Anthropol; 2009 Feb; 138(2):221-30. PubMed ID: 18773467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in femur stress after hip resurfacing arthroplasty: response to physiological loads.
    Little JP; Taddei F; Viceconti M; Murray DW; Gill HS
    Clin Biomech (Bristol, Avon); 2007 May; 22(4):440-8. PubMed ID: 17257719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alterations in femoral strain following hip resurfacing and total hip replacement.
    Deuel CR; Jamali AA; Stover SM; Hazelwood SJ
    J Bone Joint Surg Br; 2009 Jan; 91(1):124-30. PubMed ID: 19092017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduced bone stress as predicted by composite beam theory correlates with cortical bone loss following cemented total hip arthroplasty.
    Silva MJ; Reed KL; Robertson DD; Bragdon C; Harris WH; Maloney WJ
    J Orthop Res; 1999 Jul; 17(4):525-31. PubMed ID: 10459758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Biomechanical influences after implantation of a total hip endoprosthesis on the periprosthetic bone density around the cup].
    Layher F; Babisch J; Roth A
    Z Orthop Unfall; 2007; 145(2):161-8. PubMed ID: 17492555
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of periprosthetic bone remodelling after implantation of anatomic and straight stem prostheses in total hip arthroplasty.
    Grochola LF; Habermann B; Mastrodomenico N; Kurth A
    Arch Orthop Trauma Surg; 2008 Apr; 128(4):383-92. PubMed ID: 18038142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relation between subject-specific hip joint loading, stress distribution in the proximal femur and bone mineral density changes after total hip replacement.
    Jonkers I; Sauwen N; Lenaerts G; Mulier M; Van der Perre G; Jaecques S
    J Biomech; 2008 Dec; 41(16):3405-13. PubMed ID: 19019372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sex-specific developmental changes in muscle size and bone geometry at the femoral shaft.
    Högler W; Blimkie CJ; Cowell CT; Inglis D; Rauch F; Kemp AF; Wiebe P; Duncan CS; Farpour-Lambert N; Woodhead HJ
    Bone; 2008 May; 42(5):982-9. PubMed ID: 18337201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bone mineral density and singh index predict bone mechanical properties of human femur.
    D'Amelio P; Rossi P; Isaia G; Lollino N; Castoldi F; Girardo M; Dettoni F; Sattin F; Delise M; Bignardi C
    Connect Tissue Res; 2008; 49(2):99-104. PubMed ID: 18382896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Natural factors that affect the shape and strength of the aging human femur.
    Poss R
    Clin Orthop Relat Res; 1992 Jan; (274):194-201. PubMed ID: 1729003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential effects of bone structural and material properties on bone competence in C57BL/6 and C3H/He inbred strains of mice.
    Voide R; van Lenthe GH; Müller R
    Calcif Tissue Int; 2008 Jul; 83(1):61-9. PubMed ID: 18545865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanical comparison of newly designed stemless prosthesis and conventional hip prosthesis--an experimental study.
    Tai CL; Lee MS; Chen WP; Hsieh PH; Lee PC; Shih CH
    Biomed Mater Eng; 2005; 15(3):239-49. PubMed ID: 15912004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Geometric and material contributions to whole bone structural behavior in GDF-7-deficient mice.
    Maloul A; Rossmeier K; Mikic B; Pogue V; Battaglia T
    Connect Tissue Res; 2006; 47(3):157-62. PubMed ID: 16753809
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Migration and cyclic motion of a new short-stemmed hip prosthesis--a biomechanical in vitro study.
    Westphal FM; Bishop N; Honl M; Hille E; Püschel K; Morlock MM
    Clin Biomech (Bristol, Avon); 2006 Oct; 21(8):834-40. PubMed ID: 16806616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Mathematical simulation of stem/cement/bone mechanical interactions for Poldi-Cech, CF-30, MS-30 and PFC femoral components].
    Kovanda M; Havlícek V; Hudec J
    Acta Chir Orthop Traumatol Cech; 2009 Apr; 76(2):110-5. PubMed ID: 19439130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strain adaptive bone remodelling: influence of the implantation technique.
    Behrens BA; Bouguecha A; Nolte I; Meyer-Lindenberg A; Stukenborg-Colsman C; Pressel T
    Stud Health Technol Inform; 2008; 133():33-44. PubMed ID: 18376011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual-energy x-ray absorptiometry measurement and accuracy of bone mineral after unilateral total hip arthroplasty.
    Bloebaum RD; Liau DW; Lester DK; Rosenbaum TG
    J Arthroplasty; 2006 Jun; 21(4):612-22. PubMed ID: 16781417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A quantitative assessment of cross-sectional cortical bone remodeling in the femoral diaphysis following hip arthroplasty in elderly females.
    Torchia ME; Ruff CB
    J Orthop Res; 1990 Nov; 8(6):883-91. PubMed ID: 2213345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone remodeling characteristics of a short-stemmed total hip replacement.
    Chen HH; Morrey BF; An KN; Luo ZP
    J Arthroplasty; 2009 Sep; 24(6):945-50. PubMed ID: 18848420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bone loss during simulated weightlessness: a biomechanical and mineralization study in the rat model.
    Garber MA; McDowell DL; Hutton WC
    Aviat Space Environ Med; 2000 Jun; 71(6):586-92. PubMed ID: 10870817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.