These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 1877366)

  • 1. Potassium homeostasis during and following exhaustive submaximal static handgrip contractions.
    Byström S; Sjøgaard G
    Acta Physiol Scand; 1991 May; 142(1):59-66. PubMed ID: 1877366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasma potassium concentration and doppler blood flow during and following submaximal handgrip contractions.
    Jensen BR; Fallentin N; Byström S; Sjøgaard G
    Acta Physiol Scand; 1993 Feb; 147(2):203-11. PubMed ID: 8475747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuromuscular fatigue during repeated exhaustive submaximal static contractions of knee extensor muscles in endurance-trained, power-trained and untrained men.
    Pääsuke M; Ereline J; Gapeyeva H
    Acta Physiol Scand; 1999 Aug; 166(4):319-26. PubMed ID: 10468669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of recovery from local muscle fatigue by voluntary test contractions.
    Hara T
    J Hum Ergol (Tokyo); 1980 Sep; 9(1):35-46. PubMed ID: 7288165
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Breathing 40% O(2) can attenuate postcontraction hyperaemia or muscle fatigue caused by static forearm contraction, depending on timing.
    Fordy GR; Marshall JM
    Exp Physiol; 2012 Mar; 97(3):362-74. PubMed ID: 22090065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sex differences in time to task failure and blood flow for an intermittent isometric fatiguing contraction.
    Hunter SK; Griffith EE; Schlachter KM; Kufahl TD
    Muscle Nerve; 2009 Jan; 39(1):42-53. PubMed ID: 19086076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Loss of potassium from muscle during moderate exercise in humans: a result of insufficient activation of the Na+-K+-pump?
    Verburg E; Hallén J; Sejersted OM; Vøllestad NK
    Acta Physiol Scand; 1999 Apr; 165(4):357-67. PubMed ID: 10350230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of sustained low-intensity contractions on supraspinal fatigue in human elbow flexor muscles.
    Søgaard K; Gandevia SC; Todd G; Petersen NT; Taylor JL
    J Physiol; 2006 Jun; 573(Pt 2):511-23. PubMed ID: 16556656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Voluntary low-force contraction elicits prolonged low-frequency fatigue and changes in surface electromyography and mechanomyography.
    Blangsted AK; Sjøgaard G; Madeleine P; Olsen HB; Søgaard K
    J Electromyogr Kinesiol; 2005 Apr; 15(2):138-48. PubMed ID: 15664144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of beta-blockade on plasma potassium concentrations and muscle excitability following static exercise.
    Unsworth K; Hicks A; McKelvie R
    Pflugers Arch; 1998 Aug; 436(3):449-56. PubMed ID: 9644229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acceptability of intermittent handgrip contractions based on physiological response.
    Byström S; Fransson-Hall C
    Hum Factors; 1994 Mar; 36(1):158-71. PubMed ID: 8026838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fatigue of submaximal static contractions.
    Bigland-Ritchie B; Cafarelli E; Vøllestad NK
    Acta Physiol Scand Suppl; 1986; 556():137-48. PubMed ID: 3471051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. N-acetylcysteine attenuates the decline in muscle Na+,K+-pump activity and delays fatigue during prolonged exercise in humans.
    McKenna MJ; Medved I; Goodman CA; Brown MJ; Bjorksten AR; Murphy KT; Petersen AC; Sostaric S; Gong X
    J Physiol; 2006 Oct; 576(Pt 1):279-88. PubMed ID: 16840514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water and electrolyte fluxes during exercise and their relation to muscle fatigue.
    Sjøgaard G
    Acta Physiol Scand Suppl; 1986; 556():129-36. PubMed ID: 3471050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time- and frequency-domain monitoring of the myoelectric signal during a long-duration, cyclic, force-varying, fatiguing hand-grip task.
    Clancy EA; Bertolina MV; Merletti R; Farina D
    J Electromyogr Kinesiol; 2008 Oct; 18(5):789-97. PubMed ID: 17434755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temporal relationship between blood flow changes and release of ions and metabolites from muscles upon single weak contractions.
    Kiens B; Saltin B; Walløe L; Wesche J
    Acta Physiol Scand; 1989 Aug; 136(4):551-9. PubMed ID: 2782102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CNS fatigue and prolonged exercise: effect of glucose supplementation.
    Nybo L
    Med Sci Sports Exerc; 2003 Apr; 35(4):589-94. PubMed ID: 12673141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of ischemia on myo-electrical signal characteristics during rest and recovery from static work.
    Barnes WS; Williams JH
    Am J Phys Med; 1987 Oct; 66(5):249-63. PubMed ID: 3434627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fatigue and recovery after high-intensity exercise. Part II: Recovery interventions.
    Lattier G; Millet GY; Martin A; Martin V
    Int J Sports Med; 2004 Oct; 25(7):509-15. PubMed ID: 15459831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cardiovascular reflexes during sustained handgrip exercise: role of muscle fibre composition, potassium and lactate.
    Sadamoto T; Mutoh Y; Miyashita M
    Eur J Appl Physiol Occup Physiol; 1992; 65(4):324-30. PubMed ID: 1425632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.