BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 1877389)

  • 1. Application of metabolic-control logic to fuel utilization and its significance in tumor cells.
    Newsholme EA; Board M
    Adv Enzyme Regul; 1991; 31():225-46. PubMed ID: 1877389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maximum activities of key enzymes of glycolysis, glutaminolysis, pentose phosphate pathway and tricarboxylic acid cycle in normal, neoplastic and suppressed cells.
    Board M; Humm S; Newsholme EA
    Biochem J; 1990 Jan; 265(2):503-9. PubMed ID: 2302181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of high rates of glycolysis and glutamine utilization in rapidly dividing cells.
    Newsholme EA; Crabtree B; Ardawi MS
    Biosci Rep; 1985 May; 5(5):393-400. PubMed ID: 3896338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glutamine metabolism in lymphocytes: its biochemical, physiological and clinical importance.
    Newsholme EA; Crabtree B; Ardawi MS
    Q J Exp Physiol; 1985 Oct; 70(4):473-89. PubMed ID: 3909197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Maximum activities of some enzymes of glycolysis, the tricarboxylic acid cycle and ketone-body and glutamine utilization pathways in lymphocytes of the rat.
    Ardawi MS; Newsholme EA
    Biochem J; 1982 Dec; 208(3):743-8. PubMed ID: 7165729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stress eating and tuning out: cancer cells re-wire metabolism to counter stress.
    Stine ZE; Dang CV
    Crit Rev Biochem Mol Biol; 2013; 48(6):609-19. PubMed ID: 24099138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative analysis of glucose and glutamine metabolism in transformed mammalian cell lines, insect and primary liver cells.
    Neermann J; Wagner R
    J Cell Physiol; 1996 Jan; 166(1):152-69. PubMed ID: 8557765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maximum activities of some key enzymes of glycolysis, glutaminolysis, Krebs cycle and fatty acid utilization in bovine pulmonary endothelial cells.
    Leighton B; Curi R; Hussein A; Newsholme EA
    FEBS Lett; 1987 Dec; 225(1-2):93-6. PubMed ID: 3691808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glycolytic, glutaminolytic and pentose-phosphate pathways in promyelocytic HL60 and DMSO-differentiated HL60 cells.
    Ahmed N; Williams JF; Weidemann MJ
    Biochem Mol Biol Int; 1993 Apr; 29(6):1055-67. PubMed ID: 8330014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pyruvate into lactate and back: from the Warburg effect to symbiotic energy fuel exchange in cancer cells.
    Feron O
    Radiother Oncol; 2009 Sep; 92(3):329-33. PubMed ID: 19604589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of enzyme activities as indices of maximum rates of fuel utilization.
    Newsholme EA; Crabtree B; Zammit VA
    Ciba Found Symp; 1979; (73):245-58. PubMed ID: 261674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glucose and glutamine metabolism of a murine B-lymphocyte hybridoma grown in batch culture.
    Fitzpatrick L; Jenkins HA; Butler M
    Appl Biochem Biotechnol; 1993 Nov; 43(2):93-116. PubMed ID: 8267405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolism of glucose, glutamine, long-chain fatty acids and ketone bodies by murine macrophages.
    Newsholme P; Curi R; Gordon S; Newsholme EA
    Biochem J; 1986 Oct; 239(1):121-5. PubMed ID: 3800971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitivity of pathway rate to activities of substrate-cycle enzymes: application to gluconeogenesis and glycolysis.
    Regen DM; Pilkis SJ
    J Theor Biol; 1984 Dec; 111(4):635-58. PubMed ID: 6241274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis.
    DeBerardinis RJ; Mancuso A; Daikhin E; Nissim I; Yudkoff M; Wehrli S; Thompson CB
    Proc Natl Acad Sci U S A; 2007 Dec; 104(49):19345-50. PubMed ID: 18032601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of Glycolysis and Glutaminolysis: An Emerging Drug Discovery Approach to Combat Cancer.
    Akins NS; Nielson TC; Le HV
    Curr Top Med Chem; 2018; 18(6):494-504. PubMed ID: 29788892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glutaminolysis and glycolysis regulation by troglitazone in breast cancer cells: Relationship to mitochondrial membrane potential.
    Friday E; Oliver R; Welbourne T; Turturro F
    J Cell Physiol; 2011 Feb; 226(2):511-9. PubMed ID: 20683912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dysregulation of glucose transport, glycolysis, TCA cycle and glutaminolysis by oncogenes and tumor suppressors in cancer cells.
    Chen JQ; Russo J
    Biochim Biophys Acta; 2012 Dec; 1826(2):370-84. PubMed ID: 22750268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolism of glucose, glutamine, long-chain fatty acids and ketone bodies by lungs of the rat.
    Ardawi MS
    Biochimie; 1991 May; 73(5):557-62. PubMed ID: 1764500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glutamine and glucose metabolism during thymocyte proliferation. Pathways of glutamine and glutamate metabolism.
    Brand K
    Biochem J; 1985 Jun; 228(2):353-61. PubMed ID: 2861809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.