These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 18773979)

  • 1. Mechanism of the chemical step for the guanosine triphosphate (GTP) hydrolysis catalyzed by elongation factor Tu.
    Grigorenko BL; Shadrina MS; Topol IA; Collins JR; Nemukhin AV
    Biochim Biophys Acta; 2008 Dec; 1784(12):1908-17. PubMed ID: 18773979
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dynamics of ribosomal elongation factors G and Tu.
    Kulczycka K; Długosz M; Trylska J
    Eur Biophys J; 2011 Mar; 40(3):289-303. PubMed ID: 21152913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Codon-dependent conformational change of elongation factor Tu preceding GTP hydrolysis on the ribosome.
    Rodnina MV; Fricke R; Kuhn L; Wintermeyer W
    EMBO J; 1995 Jun; 14(11):2613-9. PubMed ID: 7781613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mechanism for activation of GTP hydrolysis on the ribosome.
    Voorhees RM; Schmeing TM; Kelley AC; Ramakrishnan V
    Science; 2010 Nov; 330(6005):835-838. PubMed ID: 21051640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural dynamics of translation elongation factor Tu during aa-tRNA delivery to the ribosome.
    Kavaliauskas D; Chen C; Liu W; Cooperman BS; Goldman YE; Knudsen CR
    Nucleic Acids Res; 2018 Sep; 46(16):8651-8661. PubMed ID: 30107527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The reaction of ribosomes with elongation factor Tu.GTP complexes. Aminoacyl-tRNA-independent reactions in the elongation cycle determine the accuracy of protein synthesis.
    Thompson RC; Dix DB; Karim AM
    J Biol Chem; 1986 Apr; 261(11):4868-74. PubMed ID: 3514605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. E. coli elongation factor Tu bound to a GTP analogue displays an open conformation equivalent to the GDP-bound form.
    Johansen JS; Kavaliauskas D; Pfeil SH; Blaise M; Cooperman BS; Goldman YE; Thirup SS; Knudsen CR
    Nucleic Acids Res; 2018 Sep; 46(16):8641-8650. PubMed ID: 30107565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of activation of elongation factor Tu by ribosome: catalytic histidine activates GTP by protonation.
    Aleksandrov A; Field M
    RNA; 2013 Sep; 19(9):1218-25. PubMed ID: 23864225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EF-Tu dynamics during pre-translocation complex formation: EF-Tu·GDP exits the ribosome via two different pathways.
    Liu W; Chen C; Kavaliauskas D; Knudsen CR; Goldman YE; Cooperman BS
    Nucleic Acids Res; 2015 Oct; 43(19):9519-28. PubMed ID: 26338772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of nucleotide- and aurodox-induced changes in elongation factor Tu conformation upon its interactions with aminoacyl transfer RNA. A fluorescence study.
    Dell VA; Miller DL; Johnson AE
    Biochemistry; 1990 Feb; 29(7):1757-63. PubMed ID: 2110000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Delayed release of inorganic phosphate from elongation factor Tu following GTP hydrolysis on the ribosome.
    Kothe U; Rodnina MV
    Biochemistry; 2006 Oct; 45(42):12767-74. PubMed ID: 17042495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Site-directed mutagenesis of Thermus thermophilus EF-Tu: the substitution of threonine-62 by serine or alanine.
    Ahmadian MR; Kreutzer R; Blechschmidt B; Sprinzl M
    FEBS Lett; 1995 Dec; 377(2):253-7. PubMed ID: 8543062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Essential role of histidine 84 in elongation factor Tu for the chemical step of GTP hydrolysis on the ribosome.
    Daviter T; Wieden HJ; Rodnina MV
    J Mol Biol; 2003 Sep; 332(3):689-99. PubMed ID: 12963376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP analog.
    Nissen P; Kjeldgaard M; Thirup S; Polekhina G; Reshetnikova L; Clark BF; Nyborg J
    Science; 1995 Dec; 270(5241):1464-72. PubMed ID: 7491491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of mutagenesis of Gln97 in the switch II region of Escherichia coli elongation factor Tu on its interaction with guanine nucleotides, elongation factor Ts, and aminoacyl-tRNA.
    Navratil T; Spremulli LL
    Biochemistry; 2003 Nov; 42(46):13587-95. PubMed ID: 14622005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The interface between Escherichia coli elongation factor Tu and aminoacyl-tRNA.
    Yikilmaz E; Chapman SJ; Schrader JM; Uhlenbeck OC
    Biochemistry; 2014 Sep; 53(35):5710-20. PubMed ID: 25094027
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biophysical characterization and ligand-binding properties of the elongation factor Tu from Mycobacterium tuberculosis.
    Yang J; Hong J; Luo L; Liu K; Meng C; Ji ZL; Lin D
    Acta Biochim Biophys Sin (Shanghai); 2019 Feb; 51(2):139-149. PubMed ID: 30615070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The elongation factor Tu from Escherichia coli, aminoacyl-tRNA, and guanosine tetraphosphate form a ternary complex which is bound by programmed ribosomes.
    Pingoud A; Gast FU; Block W; Peters F
    J Biol Chem; 1983 Dec; 258(23):14200-5. PubMed ID: 6358217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Properties of isolated domains of the elongation factor Tu from Thermus thermophilus HB8.
    Nock S; Grillenbeck N; Ahmadian MR; Ribeiro S; Kreutzer R; Sprinzl M
    Eur J Biochem; 1995 Nov; 234(1):132-9. PubMed ID: 8529632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complete kinetic mechanism of elongation factor Tu-dependent binding of aminoacyl-tRNA to the A site of the E. coli ribosome.
    Pape T; Wintermeyer W; Rodnina MV
    EMBO J; 1998 Dec; 17(24):7490-7. PubMed ID: 9857203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.