These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 18774206)

  • 1. Predictive model for the (14)C radioactivity in a plant following an exposure to airborne (14)CO(2) gas.
    Keum DK; Jun I; Lim KM; Choi YH; Lee CW
    J Environ Radioact; 2008 Nov; 99(11):1756-63. PubMed ID: 18774206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of long-term exposure to elevated CO(2) conditions in slow-growing plants using a (12)C-enriched CO(2)-labelling technique.
    Pardo A; Aranjuelo I; Biel C; Savé R; Azcón-Bieto J; Nogués S
    Rapid Commun Mass Spectrom; 2009 Jan; 23(2):282-90. PubMed ID: 19072866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a dynamic transfer model of (14)C from the atmosphere to rice plants.
    Tani T; Arai R; Nozoe S; Tako Y; Takahashi T; Nakamura Y
    J Environ Radioact; 2011 Apr; 102(4):340-7. PubMed ID: 21345551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Process-oriented dose assessment model for 14C due to releases during normal operation of a nuclear power plant.
    Aquilonius K; Hallberg B
    J Environ Radioact; 2005; 82(3):267-83. PubMed ID: 15885375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon-14 based determination of the biogenic fraction of industrial CO(2) emissions - application and validation.
    Palstra SW; Meijer HA
    Bioresour Technol; 2010 May; 101(10):3702-10. PubMed ID: 20079631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon-14 transfer into rice plants from a continuous atmospheric source: observations and model predictions.
    Koarashi J; Davis PA; Galeriu D; Melintescu A; Saito M; Siclet F; Uchida S
    J Environ Radioact; 2008 Oct; 99(10):1671-9. PubMed ID: 18550232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A land surface ¹⁴C transfer model and numerical experiments on belowground ¹⁴C accumulation and its impact on vegetation ¹⁴C level.
    Ota M; Nagai H; Koarashi J
    J Environ Radioact; 2012 May; 107():13-22. PubMed ID: 22370649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conceptual approaches for the development of dynamic specific activity models of 14C transfer from surface water to humans.
    Sheppard SC; Ciffroy P; Siclet F; Damois C; Sheppard MI; Stephenson M
    J Environ Radioact; 2006; 87(1):32-51. PubMed ID: 16375996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A dynamic transfer model for the estimation of 14C radioactivity in Japanese radish (Daikon) plants.
    Takashi T; Arai R; Nozoe S; Tako Y; Nakamura Y
    Health Phys; 2013 Aug; 105(2):121-7. PubMed ID: 23799496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tropical spiderwort (Commelina benghalensis L.) increases growth under elevated atmospheric carbon dioxide.
    Price AJ; Runion GB; Prior SA; Rogers HH; Torbert HA
    J Environ Qual; 2009; 38(2):729-33. PubMed ID: 19244494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Importance of mesophyll diffusion conductance in estimation of plant photosynthesis in the field.
    Niinemets U; Díaz-Espejo A; Flexas J; Galmés J; Warren CR
    J Exp Bot; 2009; 60(8):2271-82. PubMed ID: 19305021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Short-term dynamics of isotopic composition of leaf-respired CO2 upon darkening: measurements and implications.
    Werner C; Wegener F; Unger S; Nogués S; Priault P
    Rapid Commun Mass Spectrom; 2009 Aug; 23(16):2428-38. PubMed ID: 19603472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linking microbial community dynamics to rhizosphere carbon flow in a wetland rice soil.
    Lu Y; Murase J; Watanabe A; Sugimoto A; Kimura M
    FEMS Microbiol Ecol; 2004 May; 48(2):179-86. PubMed ID: 19712401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Forty years of atmospheric radiocarbon monitoring around Bohunice nuclear power plant, Slovakia.
    Povinec PP; Chudý M; Sivo A; Simon J; Holý K; Richtáriková M
    J Environ Radioact; 2009 Feb; 100(2):125-30. PubMed ID: 18926606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In-target produced [11C]methane: Increased specific radioactivity.
    Andersson J; Truong P; Halldin C
    Appl Radiat Isot; 2009 Jan; 67(1):106-10. PubMed ID: 19013077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impacts of C-uptake by plants on the spatial distribution of
    Ota M; Katata G; Nagai H; Terada H
    J Environ Radioact; 2016 Oct; 162-163():189-204. PubMed ID: 27267157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. (14)C, delta(13)C and total C content in soils around a Brazilian PWR nuclear power plant.
    Dias CM; Telles EC; Santos RV; Stenström K; Nícoli IG; da Silveira Corrêa R; Skog G
    J Environ Radioact; 2009 Apr; 100(4):348-53. PubMed ID: 19216012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atmospheric 14 C CO 2 variations in Japan during 1982--1999 based on 14 C measurements of rice grains.
    Shibata S; Kawano E; Nakabayashi T
    Appl Radiat Isot; 2005 Aug; 63(2):285-90. PubMed ID: 15935683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validation of the design of feeding experiments involving [(14)C]substrates used to monitor metabolic flux in higher plants.
    Harrison PW; Kruger NJ
    Phytochemistry; 2008 Dec; 69(17):2920-7. PubMed ID: 18992903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of biogenic and fossil CO(2) emitted by waste incineration based on (14)CO(2) and mass balances.
    Mohn J; Szidat S; Fellner J; Rechberger H; Quartier R; Buchmann B; Emmenegger L
    Bioresour Technol; 2008 Sep; 99(14):6471-9. PubMed ID: 18164616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.