These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 18774605)

  • 1. Modification of gelation kinetics in bioactive peptide amphiphiles.
    Niece KL; Czeisler C; Sahni V; Tysseling-Mattiace V; Pashuck ET; Kessler JA; Stupp SI
    Biomaterials; 2008 Dec; 29(34):4501-9. PubMed ID: 18774605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supramolecular Assembly of Peptide Amphiphiles.
    Hendricks MP; Sato K; Palmer LC; Stupp SI
    Acc Chem Res; 2017 Oct; 50(10):2440-2448. PubMed ID: 28876055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-assembly of peptide-amphiphile nanofibers: the roles of hydrogen bonding and amphiphilic packing.
    Paramonov SE; Jun HW; Hartgerink JD
    J Am Chem Soc; 2006 Jun; 128(22):7291-8. PubMed ID: 16734483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-assembly of peptide amphiphiles: from molecules to nanostructures to biomaterials.
    Cui H; Webber MJ; Stupp SI
    Biopolymers; 2010; 94(1):1-18. PubMed ID: 20091874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elastin-like peptide amphiphiles form nanofibers with tunable length.
    Aluri S; Pastuszka MK; Moses AS; MacKay JA
    Biomacromolecules; 2012 Sep; 13(9):2645-54. PubMed ID: 22849577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. T-shaped Peptide Amphiphiles Self Assemble into Nanofiber Networks.
    Fisusi FA; Notman R; Granger LA; Malkinson JP; Schatzlein AG; Uchegbu IF
    Pharm Nanotechnol; 2017; 5(3):215-219. PubMed ID: 28847269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-Assembly of Peptide Bioconjugates: Selected Recent Research Highlights.
    Hamley IW; Castelletto V
    Bioconjug Chem; 2017 Mar; 28(3):731-739. PubMed ID: 27348697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrostatic effects on nanofiber formation of self-assembling peptide amphiphiles.
    Toksoz S; Mammadov R; Tekinay AB; Guler MO
    J Colloid Interface Sci; 2011 Apr; 356(1):131-7. PubMed ID: 21269637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuning the mechanical and bioresponsive properties of peptide-amphiphile nanofiber networks.
    Jun HW; Paramonov SE; Dong H; Forraz N; McGuckin C; Hartgerink JD
    J Biomater Sci Polym Ed; 2008; 19(5):665-76. PubMed ID: 18419944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunable mechanics of peptide nanofiber gels.
    Greenfield MA; Hoffman JR; de la Cruz MO; Stupp SI
    Langmuir; 2010 Mar; 26(5):3641-7. PubMed ID: 19817454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mineralization of peptide amphiphile nanofibers and its effect on the differentiation of human mesenchymal stem cells.
    Sargeant TD; Aparicio C; Goldberger JE; Cui H; Stupp SI
    Acta Biomater; 2012 Jul; 8(7):2456-65. PubMed ID: 22440242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rational design of charged peptides that self-assemble into robust nanofibers as immune-functional scaffolds.
    Zhang H; Park J; Jiang Y; Woodrow KA
    Acta Biomater; 2017 Jun; 55():183-193. PubMed ID: 28365480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peptide amphiphile nanofibers with conjugated polydiacetylene backbones in their core.
    Hsu L; Cvetanovich GL; Stupp SI
    J Am Chem Soc; 2008 Mar; 130(12):3892-9. PubMed ID: 18314978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic resonance imaging of self-assembled biomaterial scaffolds.
    Bull SR; Guler MO; Bras RE; Venkatasubramanian PN; Stupp SI; Meade TJ
    Bioconjug Chem; 2005; 16(6):1343-8. PubMed ID: 16287227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular self-assembly and applications of designer peptide amphiphiles.
    Zhao X; Pan F; Xu H; Yaseen M; Shan H; Hauser CA; Zhang S; Lu JR
    Chem Soc Rev; 2010 Sep; 39(9):3480-98. PubMed ID: 20498896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of nanostructures based on aromatic peptide amphiphiles.
    Fleming S; Ulijn RV
    Chem Soc Rev; 2014 Dec; 43(23):8150-77. PubMed ID: 25199102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-assembly of multidomain peptides: sequence variation allows control over cross-linking and viscoelasticity.
    Aulisa L; Dong H; Hartgerink JD
    Biomacromolecules; 2009 Sep; 10(9):2694-8. PubMed ID: 19705838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solution conformational features and interfacial properties of an intrinsically disordered peptide coupled to alkyl chains: a new class of peptide amphiphiles.
    Accardo A; Leone M; Tesauro D; Aufiero R; BĂ©narouche A; Cavalier JF; Longhi S; Carriere F; Rossi F
    Mol Biosyst; 2013 Jun; 9(6):1401-10. PubMed ID: 23483086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-Assembly of Short Amphiphilic Peptides and Their Biomedical Applications.
    Le X; Gao T; Wang L; Wei F; Chen C; Zhao Y
    Curr Pharm Des; 2022; 28(44):3546-3562. PubMed ID: 36424793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Designed peptide amphiphiles as scaffolds for tissue engineering.
    Sun W; Gregory DA; Zhao X
    Adv Colloid Interface Sci; 2023 Apr; 314():102866. PubMed ID: 36898186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.