BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

867 related articles for article (PubMed ID: 18774806)

  • 1. Is the bound substrate in nitric oxide synthase protonated or neutral and what is the active oxidant that performs substrate hydroxylation?
    de Visser SP; Tan LS
    J Am Chem Soc; 2008 Oct; 130(39):12961-74. PubMed ID: 18774806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A proton-shuttle mechanism mediated by the porphyrin in benzene hydroxylation by cytochrome p450 enzymes.
    de Visser SP; Shaik S
    J Am Chem Soc; 2003 Jun; 125(24):7413-24. PubMed ID: 12797816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Is the ruthenium analogue of compound I of cytochrome p450 an efficient oxidant? A theoretical investigation of the methane hydroxylation reaction.
    Sharma PK; De Visser SP; Ogliaro F; Shaik S
    J Am Chem Soc; 2003 Feb; 125(8):2291-300. PubMed ID: 12590559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum chemical calculations of the NHA bound nitric oxide synthase active site: O2 binding and implications for the catalytic mechanism.
    Cho KB; Gauld JW
    J Am Chem Soc; 2004 Aug; 126(33):10267-70. PubMed ID: 15315438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The catalytic mechanism of peptidylglycine alpha-hydroxylating monooxygenase investigated by computer simulation.
    Crespo A; Martí MA; Roitberg AE; Amzel LM; Estrin DA
    J Am Chem Soc; 2006 Oct; 128(39):12817-28. PubMed ID: 17002377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A tryptophan that modulates tetrahydrobiopterin-dependent electron transfer in nitric oxide synthase regulates enzyme catalysis by additional mechanisms.
    Wang ZQ; Wei CC; Santolini J; Panda K; Wang Q; Stuehr DJ
    Biochemistry; 2005 Mar; 44(12):4676-90. PubMed ID: 15779894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitrosyl-heme structures of Bacillus subtilis nitric oxide synthase have implications for understanding substrate oxidation.
    Pant K; Crane BR
    Biochemistry; 2006 Feb; 45(8):2537-44. PubMed ID: 16489746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alternative nitric oxide-producing substrates for NO synthases.
    Mansuy D; Boucher JL
    Free Radic Biol Med; 2004 Oct; 37(8):1105-21. PubMed ID: 15451052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A theoretical study on the mechanism of camphor hydroxylation by compound I of cytochrome p450.
    Kamachi T; Yoshizawa K
    J Am Chem Soc; 2003 Apr; 125(15):4652-61. PubMed ID: 12683838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ligand, cofactor, and residue vibrations in the catalytic site of endothelial nitric oxide synthase.
    Ingledew WJ; Smith SM; Gao YT; Jones RJ; Salerno JC; Rich PR
    Biochemistry; 2005 Mar; 44(11):4238-46. PubMed ID: 15766252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substrate specificity of NO synthases: detailed comparison of L-arginine, homo-L-arginine, their N omega-hydroxy derivatives, and N omega-hydroxynor-L-arginine.
    Moali C; Boucher JL; Sari MA; Stuehr DJ; Mansuy D
    Biochemistry; 1998 Jul; 37(29):10453-60. PubMed ID: 9671515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the identity and reactivity patterns of the "second oxidant" of the T252A mutant of cytochrome P450cam in the oxidation of 5-methylenenylcamphor.
    Hirao H; Kumar D; Shaik S
    J Inorg Biochem; 2006 Dec; 100(12):2054-68. PubMed ID: 17084458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of tetrahydrobiopterin tunes its electron transfer to the heme-dioxy intermediate in nitric oxide synthase.
    Wei CC; Wang ZQ; Arvai AS; Hemann C; Hille R; Getzoff ED; Stuehr DJ
    Biochemistry; 2003 Feb; 42(7):1969-77. PubMed ID: 12590583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions between substrate analogues and heme ligands in nitric oxide synthase.
    Wang J; Stuehr DJ; Rousseau DL
    Biochemistry; 1997 Apr; 36(15):4595-606. PubMed ID: 9109669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of the putative catalytic base in the phosphoryl transfer reaction in a protein kinase: first-principles calculations.
    Valiev M; Kawai R; Adams JA; Weare JH
    J Am Chem Soc; 2003 Aug; 125(33):9926-7. PubMed ID: 12914447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and synthesis of C5 methylated L-arginine analogues as active site probes for nitric oxide synthase.
    Martin NI; Woodward JJ; Winter MB; Beeson WT; Marletta MA
    J Am Chem Soc; 2007 Oct; 129(41):12563-70. PubMed ID: 17892291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ligand-protein interactions in nitric oxide synthase.
    Rousseau DL; Li D; Couture M; Yeh SR
    J Inorg Biochem; 2005 Jan; 99(1):306-23. PubMed ID: 15598509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substrate- and isoform-specific dioxygen complexes of nitric oxide synthase.
    Li D; Kabir M; Stuehr DJ; Rousseau DL; Yeh SR
    J Am Chem Soc; 2007 May; 129(21):6943-51. PubMed ID: 17488012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New features in the catalytic cycle of cytochrome P450 during the formation of compound I from compound 0.
    Kumar D; Hirao H; de Visser SP; Zheng J; Wang D; Thiel W; Shaik S
    J Phys Chem B; 2005 Oct; 109(42):19946-51. PubMed ID: 16853579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compound I of nitric oxide synthase: the active site protonation state.
    Cho KB; Derat E; Shaik S
    J Am Chem Soc; 2007 Mar; 129(11):3182-8. PubMed ID: 17319660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 44.