These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 18774847)

  • 1. Introducing a cellular automaton as an empirical model to study static and dynamic properties of molecules adsorbed in zeolites.
    Demontis P; Pazzona FG; Suffritti GB
    J Phys Chem B; 2008 Oct; 112(39):12444-52. PubMed ID: 18774847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diffusion in tight confinement: a lattice-gas cellular automaton approach. I. Structural equilibrium properties.
    Demontis P; Pazzona FG; Suffritti GB
    J Chem Phys; 2007 May; 126(19):194709. PubMed ID: 17523830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From thermodynamic cell models to partitioning cellular automata for diffusion in zeolites. I. Structure of the algorithm.
    Pazzona FG; Demontis P; Suffritti GB
    J Chem Phys; 2009 Dec; 131(23):234703. PubMed ID: 20025338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diffusion in tight confinement: a lattice-gas cellular automaton approach. II. Transport properties.
    Demontis P; Pazzona FG; Suffritti GB
    J Chem Phys; 2007 May; 126(19):194710. PubMed ID: 17523831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From thermodynamic cell models to partitioning cellular automata for diffusion in zeolites. II. Static and dynamic properties.
    Pazzona FG; Demontis P; Suffritti GB
    J Chem Phys; 2009 Dec; 131(23):234704. PubMed ID: 20025339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mean field kinetic theory for a lattice gas model of fluids confined in porous materials.
    Monson PA
    J Chem Phys; 2008 Feb; 128(8):084701. PubMed ID: 18315066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption and diffusion of benzene in the nanoporous catalysts FAU, ZSM-5 and MCM-22: a molecular dynamics study.
    Rungsirisakun R; Nanok T; Probst M; Limtrakul J
    J Mol Graph Model; 2006 Mar; 24(5):373-82. PubMed ID: 16288979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diffusion of particles over dynamically disordered lattice.
    Tarasenko A; Jastrabik L
    Phys Chem Chem Phys; 2011 Feb; 13(6):2300-6. PubMed ID: 21113513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A lattice-gas cellular automaton to model diffusion in restricted geometries.
    Demontis P; Pazzona FG; Suffritti GB
    J Phys Chem B; 2006 Jul; 110(27):13554-9. PubMed ID: 16821882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient chain moves for Monte Carlo simulations of a wormlike DNA model: excluded volume, supercoils, site juxtapositions, knots, and comparisons with random-flight and lattice models.
    Liu Z; Chan HS
    J Chem Phys; 2008 Apr; 128(14):145104. PubMed ID: 18412482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic study of the "surface explosion" phenomenon in the NO+CO reaction on Pt(100) through dynamic Monte Carlo simulation.
    Alas SJ; Vicente L
    J Chem Phys; 2008 Apr; 128(13):134705. PubMed ID: 18397092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient prediction of thermodynamic properties of quadrupolar fluids from simulation of a coarse-grained model: the case of carbon dioxide.
    Mognetti BM; Yelash L; Virnau P; Paul W; Binder K; Müller M; MacDowell LG
    J Chem Phys; 2008 Mar; 128(10):104501. PubMed ID: 18345900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gibbs ensemble Monte Carlo simulation of supercritical CO2 adsorption on NaA and NaX zeolites.
    Liu S; Yang X
    J Chem Phys; 2006 Jun; 124(24):244705. PubMed ID: 16821994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coarse-grained lattice kinetic Monte Carlo simulation of systems of strongly interacting particles.
    Dai J; Seider WD; Sinno T
    J Chem Phys; 2008 May; 128(19):194705. PubMed ID: 18500884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular simulation of the effect of temperature and architecture on polyethylene barrier properties.
    Gestoso P; Karayiannis NCh
    J Phys Chem B; 2008 May; 112(18):5646-60. PubMed ID: 18407702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatially adaptive lattice coarse-grained Monte Carlo simulations for diffusion of interacting molecules.
    Chatterjee A; Vlachos DG; Katsoulakis MA
    J Chem Phys; 2004 Dec; 121(22):11420-31. PubMed ID: 15634102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular simulation of loading-dependent diffusion in nanoporous materials using extended dynamically corrected transition state theory.
    Dubbeldam D; Beerdsen E; Vlugt TJ; Smit B
    J Chem Phys; 2005 Jun; 122(22):224712. PubMed ID: 15974708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Configurational entropy of interacting particles adsorbed on one-dimensional channels arranged in a triangular structure.
    Pasinetti PM; Riccardo JL; Ramirez-Pastor AJ
    J Chem Phys; 2005 Apr; 122(15):154708. PubMed ID: 15945657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dielectric constant and density dependence of the structure of supercritical carbon dioxide using a new modified empirical potential model: a Monte Carlo simulation study.
    Zhang Y; Yang J; Yu YX
    J Phys Chem B; 2005 Jul; 109(27):13375-82. PubMed ID: 16852670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum effects on adsorption and diffusion of hydrogen and deuterium in microporous materials.
    Kumar AV; Jobic H; Bhatia SK
    J Phys Chem B; 2006 Aug; 110(33):16666-71. PubMed ID: 16913804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.