BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 18774930)

  • 1. Structure and function of MYST1 histone acetyltransferase in the interactome of animal cells.
    Dmitriev RI; Shakhparonov MI; Pestov NB
    Biochemistry (Mosc); 2008 Aug; 73(8):839-52. PubMed ID: 18774930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New perspectives for the regulation of acetyltransferase MOF.
    Li X; Dou Y
    Epigenetics; 2010 Apr; 5(3):185-8. PubMed ID: 20305383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The C-terminal domains of ADA2 proteins determine selective incorporation into GCN5-containing complexes that target histone H3 or H4 for acetylation.
    Vamos EE; Boros IM
    FEBS Lett; 2012 Sep; 586(19):3279-86. PubMed ID: 22796493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mammalian ortholog of Drosophila MOF that acetylates histone H4 lysine 16 is essential for embryogenesis and oncogenesis.
    Gupta A; Guerin-Peyrou TG; Sharma GG; Park C; Agarwal M; Ganju RK; Pandita S; Choi K; Sukumar S; Pandita RK; Ludwig T; Pandita TK
    Mol Cell Biol; 2008 Jan; 28(1):397-409. PubMed ID: 17967868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Males absent on the first (MOF): from flies to humans.
    Rea S; Xouri G; Akhtar A
    Oncogene; 2007 Aug; 26(37):5385-94. PubMed ID: 17694080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ING tumor suppressor proteins are critical regulators of chromatin acetylation required for genome expression and perpetuation.
    Doyon Y; Cayrou C; Ullah M; Landry AJ; Côté V; Selleck W; Lane WS; Tan S; Yang XJ; Côté J
    Mol Cell; 2006 Jan; 21(1):51-64. PubMed ID: 16387653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Histone Lysine and Genomic Targets of Histone Acetyltransferases in Mammals.
    Voss AK; Thomas T
    Bioessays; 2018 Oct; 40(10):e1800078. PubMed ID: 30144132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A link between Sas2-mediated H4 K16 acetylation, chromatin assembly in S-phase by CAF-I and Asf1, and nucleosome assembly by Spt6 during transcription.
    Reiter C; Heise F; Chung HR; Ehrenhofer-Murray AE
    FEMS Yeast Res; 2015 Nov; 15(7):. PubMed ID: 26260510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mof (MYST1 or KAT8) is essential for progression of embryonic development past the blastocyst stage and required for normal chromatin architecture.
    Thomas T; Dixon MP; Kueh AJ; Voss AK
    Mol Cell Biol; 2008 Aug; 28(16):5093-105. PubMed ID: 18541669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NuA4 histone acetyltransferase activity is required for H4 acetylation on a dosage-compensated monosomic chromosome that confers resistance to fungal toxins.
    Wakabayashi H; Tucker C; Bethlendy G; Kravets A; Welle SL; Bulger M; Hayes JJ; Rustchenko E
    Epigenetics Chromatin; 2017 Oct; 10(1):49. PubMed ID: 29061172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The dimeric structure and the bivalent recognition of H3K4me3 by the tumor suppressor ING4 suggests a mechanism for enhanced targeting of the HBO1 complex to chromatin.
    Palacios A; Moreno A; Oliveira BL; Rivera T; Prieto J; García P; Fernández-Fernández MR; Bernadó P; Palmero I; Blanco FJ
    J Mol Biol; 2010 Mar; 396(4):1117-27. PubMed ID: 20053357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The essential gene wda encodes a WD40 repeat subunit of Drosophila SAGA required for histone H3 acetylation.
    Guelman S; Suganuma T; Florens L; Weake V; Swanson SK; Washburn MP; Abmayr SM; Workman JL
    Mol Cell Biol; 2006 Oct; 26(19):7178-89. PubMed ID: 16980620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The activation potential of MOF is constrained for dosage compensation.
    Prestel M; Feller C; Straub T; Mitlöhner H; Becker PB
    Mol Cell; 2010 Jun; 38(6):815-26. PubMed ID: 20620953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Drosophila histone acetyltransferase Gcn5 and transcriptional adaptor Ada2a are involved in nucleosomal histone H4 acetylation.
    Ciurciu A; Komonyi O; Pankotai T; Boros IM
    Mol Cell Biol; 2006 Dec; 26(24):9413-23. PubMed ID: 17030603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of an ING1 growth regulator in transcriptional activation and targeted histone acetylation by the NuA4 complex.
    Nourani A; Doyon Y; Utley RT; Allard S; Lane WS; Côté J
    Mol Cell Biol; 2001 Nov; 21(22):7629-40. PubMed ID: 11604499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two distinct nuclear localization signals in mammalian MSL1 regulate its function.
    Dmitriev RI; Pestov NB; Shakhparonov MI; Okkelman IA
    J Cell Biochem; 2014 Nov; 115(11):1967-73. PubMed ID: 24913909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D structure prediction of histone acetyltransferase proteins of the MYST family and their interactome in Arabidopsis thaliana.
    Raevsky AV; Sharifi M; Samofalova DA; Karpov PA; Blume YB
    J Mol Model; 2016 Nov; 22(11):256. PubMed ID: 27709438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site specificity analysis of Piccolo NuA4-mediated acetylation for different histone complexes.
    Kuo YM; Henry RA; Tan S; Côté J; Andrews AJ
    Biochem J; 2015 Dec; 472(2):239-48. PubMed ID: 26420880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The non-dosage compensated Lsp1alpha gene of Drosophila melanogaster escapes acetylation by MOF in larval fat body nuclei, but is flanked by two dosage compensated genes.
    Weake VM; Scott MJ
    BMC Mol Biol; 2007 May; 8():35. PubMed ID: 17511883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two mammalian MOF complexes regulate transcription activation by distinct mechanisms.
    Li X; Wu L; Corsa CA; Kunkel S; Dou Y
    Mol Cell; 2009 Oct; 36(2):290-301. PubMed ID: 19854137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.