These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 1877504)

  • 41. Potential targets for skeletal muscle impairment by hypogravity: basic characterization of resting ionic conductances and mechanical threshold of rat fast- and slow-twitch muscle fibers.
    De Luca A; Liantonio A; Pierno S; Desaphy JF; Leoty C; Conte Camerino D
    J Gravit Physiol; 1998 Jul; 5(1):P75-6. PubMed ID: 11542372
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Phosphagen and intracellular pH changes during contraction of creatine-depleted rat muscle.
    Meyer RA; Brown TR; Krilowicz BL; Kushmerick MJ
    Am J Physiol; 1986 Feb; 250(2 Pt 1):C264-74. PubMed ID: 3953780
    [TBL] [Abstract][Full Text] [Related]  

  • 43. K(+)-induced inhibition of contractile force in rat skeletal muscle: role of active Na(+)-K+ transport.
    Clausen T; Everts ME
    Am J Physiol; 1991 Nov; 261(5 Pt 1):C799-807. PubMed ID: 1659208
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Electrochemical potentials of potassium in skeletal muscle under different metabolic states.
    Khuri RN; Agulian SK; Abdulnour-Nakhoul S; Nakhoul NL
    J Cell Physiol; 1992 Dec; 153(3):534-8. PubMed ID: 1447314
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Heterogeneity of intracellular potassium activity and membrane potential in hypoxic guinea pig ventricle.
    Baumgarten CM; Cohen CJ; McDonald TF
    Circ Res; 1981 Nov; 49(5):1181-9. PubMed ID: 7296784
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Potassium, magnesium and membranes. Review of present status and new findings.
    Bara M; Guiet-Bara A
    Magnesium; 1984; 3(4-6):215-25. PubMed ID: 6399343
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Redox modulation of maximum force production of fast-and slow-twitch skeletal muscles of rats and mice.
    Plant DR; Gregorevic P; Williams DA; Lynch GS
    J Appl Physiol (1985); 2001 Mar; 90(3):832-8. PubMed ID: 11181590
    [TBL] [Abstract][Full Text] [Related]  

  • 48. {alpha}-Adrenoceptor constrictor responses and their modulation in slow-twitch and fast-twitch mouse skeletal muscle.
    Lambert DG; Thomas GD
    J Physiol; 2005 Mar; 563(Pt 3):821-9. PubMed ID: 15618269
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Relationship between plasma somatomedin-C and liver somatogenic binding sites in neonatal rats during malnutrition and after short and long term refeeding.
    Maes M; Underwood LE; GĂ©rard G; Ketelslegers JM
    Endocrinology; 1984 Aug; 115(2):786-92. PubMed ID: 6540165
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The intracellular concentration of free magnesium in extensor digitorum longus muscles of the rat.
    MacDermott M
    Exp Physiol; 1990 Nov; 75(6):763-9. PubMed ID: 2271155
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Hyperpolarization of mammalian skeletal muscle fibers in K-free media.
    Akaike N
    Am J Physiol; 1982 Jan; 242(1):C12-8. PubMed ID: 6800259
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The response of hind-limb muscles of the weanling rat to undernutrition and subsequent rehabilitation.
    Dickerson JW; McAnulty PA
    Br J Nutr; 1975 Mar; 33(2):171-80. PubMed ID: 1115759
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The effect of fasting and hypocaloric diets on the functional and metabolic characteristics of rat gastrocnemius muscle.
    Russell DM; Atwood HL; Whittaker JS; Itakura T; Walker PM; Mickle DA; Jeejeebhoy KN
    Clin Sci (Lond); 1984 Aug; 67(2):185-94. PubMed ID: 6744788
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mechanism of reduction of total body potassium in malnutrition.
    Jeejeebhoy KN
    Basic Life Sci; 1990; 55():143-7. PubMed ID: 1965119
    [No Abstract]   [Full Text] [Related]  

  • 55. Studies of caesium uptake by rat soleus and vastus lateralis muscles in vivo and of its efflux rate relative to potassium in vitro.
    Kernan RP
    Pflugers Arch; 1972; 333(2):95-110. PubMed ID: 5065512
    [No Abstract]   [Full Text] [Related]  

  • 56. Effect of insulin on membrane potential and potassium content of rat muscle.
    ZIERLER KL
    Am J Physiol; 1959 Sep; 197():515-23. PubMed ID: 13847454
    [No Abstract]   [Full Text] [Related]  

  • 57. Muscle power after glucose-potassium loading in undernourished patients.
    Chan ST; McLaughlin SJ; Ponting GA; Biglin J; Dudley HA
    Br Med J (Clin Res Ed); 1986 Oct; 293(6554):1055-6. PubMed ID: 3094773
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Changes in the extracellular compartment of muscle and skin during normal and retarded development.
    Widdowson EM
    Bibl Nutr Dieta; 1969; 13():60-8. PubMed ID: 5344716
    [No Abstract]   [Full Text] [Related]  

  • 59. Muscle membrane potential, resistance, and external potassium chloride.
    JENERICK HP
    J Cell Comp Physiol; 1953 Dec; 42(3):427-48. PubMed ID: 13117937
    [No Abstract]   [Full Text] [Related]  

  • 60. Neuromuscular and related changes in malnutrition. A review.
    Dastur DK; Manghani DK; Osuntokun BO; Sourander P; Kondo K
    J Neurol Sci; 1982 Aug; 55(2):207-30. PubMed ID: 7131032
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.