BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 18775325)

  • 1. Bypassing Sir2 and O-acetyl-ADP-ribose in transcriptional silencing.
    Chou CC; Li YC; Gartenberg MR
    Mol Cell; 2008 Sep; 31(5):650-9. PubMed ID: 18775325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assembly of the SIR complex and its regulation by O-acetyl-ADP-ribose, a product of NAD-dependent histone deacetylation.
    Liou GG; Tanny JC; Kruger RG; Walz T; Moazed D
    Cell; 2005 May; 121(4):515-527. PubMed ID: 15907466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A nonhistone protein-protein interaction required for assembly of the SIR complex and silent chromatin.
    Rudner AD; Hall BE; Ellenberger T; Moazed D
    Mol Cell Biol; 2005 Jun; 25(11):4514-28. PubMed ID: 15899856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconstitution of yeast silent chromatin: multiple contact sites and O-AADPR binding load SIR complexes onto nucleosomes in vitro.
    Martino F; Kueng S; Robinson P; Tsai-Pflugfelder M; van Leeuwen F; Ziegler M; Cubizolles F; Cockell MM; Rhodes D; Gasser SM
    Mol Cell; 2009 Feb; 33(3):323-34. PubMed ID: 19217406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupling of histone deacetylation to NAD breakdown by the yeast silencing protein Sir2: Evidence for acetyl transfer from substrate to an NAD breakdown product.
    Tanny JC; Moazed D
    Proc Natl Acad Sci U S A; 2001 Jan; 98(2):415-20. PubMed ID: 11134535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stabilization of Sir3 interactions by an epigenetic metabolic small molecule, O-acetyl-ADP-ribose, on yeast SIR-nucleosome silent heterochromatin.
    Wang SH; Lee SP; Tung SY; Tsai SP; Tsai HC; Shen HH; Hong JY; Su KC; Chen FJ; Liu BH; Wu YY; Hsiao SP; Tsai MS; Liou GG
    Arch Biochem Biophys; 2019 Aug; 671():167-174. PubMed ID: 31295433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of substrate analogs and mutagenesis to study substrate binding and catalysis in the Sir2 family of NAD-dependent protein deacetylases.
    Khan AN; Lewis PN
    J Biol Chem; 2006 Apr; 281(17):11702-11. PubMed ID: 16520376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rpd3-dependent boundary formation at telomeres by removal of Sir2 substrate.
    Ehrentraut S; Weber JM; Dybowski JN; Hoffmann D; Ehrenhofer-Murray AE
    Proc Natl Acad Sci U S A; 2010 Mar; 107(12):5522-7. PubMed ID: 20133733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SIR2: the biochemical mechanism of NAD(+)-dependent protein deacetylation and ADP-ribosyl enzyme intermediates.
    Sauve AA; Schramm VL
    Curr Med Chem; 2004 Apr; 11(7):807-26. PubMed ID: 15078167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1.
    Bitterman KJ; Anderson RM; Cohen HY; Latorre-Esteves M; Sinclair DA
    J Biol Chem; 2002 Nov; 277(47):45099-107. PubMed ID: 12297502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancer role of a native metabolite, O-acetyl-ADP-ribose, on the Saccharomyces cerevisiae chromatin epigenetic gene silencing.
    Wang SH; Tung SY; Su KC; Shen HH; Hong JY; Tsai MS; Liou GG
    Genes Cells; 2019 Jun; 24(6):449-457. PubMed ID: 30974043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Function and metabolism of sirtuin metabolite O-acetyl-ADP-ribose.
    Tong L; Denu JM
    Biochim Biophys Acta; 2010 Aug; 1804(8):1617-25. PubMed ID: 20176146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substrate specificity and kinetic mechanism of the Sir2 family of NAD+-dependent histone/protein deacetylases.
    Borra MT; Langer MR; Slama JT; Denu JM
    Biochemistry; 2004 Aug; 43(30):9877-87. PubMed ID: 15274642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstitution of heterochromatin-dependent transcriptional gene silencing.
    Johnson A; Li G; Sikorski TW; Buratowski S; Woodcock CL; Moazed D
    Mol Cell; 2009 Sep; 35(6):769-81. PubMed ID: 19782027
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bypassing the catalytic activity of SIR2 for SIR protein spreading in Saccharomyces cerevisiae.
    Yang B; Kirchmaier AL
    Mol Biol Cell; 2006 Dec; 17(12):5287-97. PubMed ID: 17035629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Steps in assembly of silent chromatin in yeast: Sir3-independent binding of a Sir2/Sir4 complex to silencers and role for Sir2-dependent deacetylation.
    Hoppe GJ; Tanny JC; Rudner AD; Gerber SA; Danaie S; Gygi SP; Moazed D
    Mol Cell Biol; 2002 Jun; 22(12):4167-80. PubMed ID: 12024030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Histone Deacetylases with Antagonistic Roles in Saccharomyces cerevisiae Heterochromatin Formation.
    Thurtle-Schmidt DM; Dodson AE; Rine J
    Genetics; 2016 Sep; 204(1):177-90. PubMed ID: 27489001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Capability of O-Acetyl-ADP-Ribose, an Epigenetic Metabolic Small Molecule, on Promoting the Further Spreading of Sir3 along the Telomeric Chromatin.
    Tung SY; Wang SH; Lee SP; Tsai SP; Su KC; Shen HH; Hong JY; Tsai MS; Liou GG
    Genes (Basel); 2019 Jul; 10(8):. PubMed ID: 31366171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural basis for nicotinamide cleavage and ADP-ribose transfer by NAD(+)-dependent Sir2 histone/protein deacetylases.
    Zhao K; Harshaw R; Chai X; Marmorstein R
    Proc Natl Acad Sci U S A; 2004 Jun; 101(23):8563-8. PubMed ID: 15150415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Sir2 family of protein deacetylases.
    Blander G; Guarente L
    Annu Rev Biochem; 2004; 73():417-35. PubMed ID: 15189148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.