BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 18775325)

  • 21. Swapping the gene-specific and regional silencing specificities of the Hst1 and Sir2 histone deacetylases.
    Mead J; McCord R; Youngster L; Sharma M; Gartenberg MR; Vershon AK
    Mol Cell Biol; 2007 Apr; 27(7):2466-75. PubMed ID: 17242192
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A unique class of conditional sir2 mutants displays distinct silencing defects in Saccharomyces cerevisiae.
    Garcia SN; Pillus L
    Genetics; 2002 Oct; 162(2):721-36. PubMed ID: 12399383
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chemical activation of Sir2-dependent silencing by relief of nicotinamide inhibition.
    Sauve AA; Moir RD; Schramm VL; Willis IM
    Mol Cell; 2005 Feb; 17(4):595-601. PubMed ID: 15721262
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural analyses of Sum1-1p-dependent transcriptionally silent chromatin in Saccharomyces cerevisiae.
    Yu Q; Elizondo S; Bi X
    J Mol Biol; 2006 Mar; 356(5):1082-92. PubMed ID: 16406069
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Limiting the extent of the RDN1 heterochromatin domain by a silencing barrier and Sir2 protein levels in Saccharomyces cerevisiae.
    Biswas M; Maqani N; Rai R; Kumaran SP; Iyer KR; Sendinc E; Smith JS; Laloraya S
    Mol Cell Biol; 2009 May; 29(10):2889-98. PubMed ID: 19289503
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A model for step-wise assembly of heterochromatin in yeast.
    Moazed D; Rudner AD; Huang J; Hoppe GJ; Tanny JC
    Novartis Found Symp; 2004; 259():48-56; discussion 56-62, 163-9. PubMed ID: 15171246
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase.
    Imai S; Armstrong CM; Kaeberlein M; Guarente L
    Nature; 2000 Feb; 403(6771):795-800. PubMed ID: 10693811
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Budding yeast silencing complexes and regulation of Sir2 activity by protein-protein interactions.
    Tanny JC; Kirkpatrick DS; Gerber SA; Gygi SP; Moazed D
    Mol Cell Biol; 2004 Aug; 24(16):6931-46. PubMed ID: 15282295
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural identification of 2'- and 3'-O-acetyl-ADP-ribose as novel metabolites derived from the Sir2 family of beta -NAD+-dependent histone/protein deacetylases.
    Jackson MD; Denu JM
    J Biol Chem; 2002 May; 277(21):18535-44. PubMed ID: 11893743
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SIR2-induced inviability is suppressed by histone H4 overexpression.
    Matecic M; Stuart S; Holmes SG
    Genetics; 2002 Oct; 162(2):973-6. PubMed ID: 12399404
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modulations of SIR-nucleosome interactions of reconstructed yeast silent pre-heterochromatin by O-acetyl-ADP-ribose and magnesium.
    Tung SY; Wang SH; Lee SP; Tsai SP; Shen HH; Chen FJ; Wu YY; Hsiao SP; Liou GG
    Mol Biol Cell; 2017 Feb; 28(3):381-386. PubMed ID: 27932495
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chemistry of gene silencing: the mechanism of NAD+-dependent deacetylation reactions.
    Sauve AA; Celic I; Avalos J; Deng H; Boeke JD; Schramm VL
    Biochemistry; 2001 Dec; 40(51):15456-63. PubMed ID: 11747420
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enzymatic activities of Sir2 and chromatin silencing.
    Moazed D
    Curr Opin Cell Biol; 2001 Apr; 13(2):232-8. PubMed ID: 11248558
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Conserved enzymatic production and biological effect of O-acetyl-ADP-ribose by silent information regulator 2-like NAD+-dependent deacetylases.
    Borra MT; O'Neill FJ; Jackson MD; Marshall B; Verdin E; Foltz KR; Denu JM
    J Biol Chem; 2002 Apr; 277(15):12632-41. PubMed ID: 11812793
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Silent information regulator 2 family of NAD- dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose.
    Tanner KG; Landry J; Sternglanz R; Denu JM
    Proc Natl Acad Sci U S A; 2000 Dec; 97(26):14178-82. PubMed ID: 11106374
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure of the coiled-coil dimerization motif of Sir4 and its interaction with Sir3.
    Chang JF; Hall BE; Tanny JC; Moazed D; Filman D; Ellenberger T
    Structure; 2003 Jun; 11(6):637-49. PubMed ID: 12791253
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sir2 regulation by nicotinamide results from switching between base exchange and deacetylation chemistry.
    Sauve AA; Schramm VL
    Biochemistry; 2003 Aug; 42(31):9249-56. PubMed ID: 12899610
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Isolation and characterization of conditional alleles of the yeast SIR2 gene.
    Hickman M; McCullough K; Woike A; Raducha-Grace L; Rozario T; Dula ML; Anderson E; Margalit D; Holmes SG
    J Mol Biol; 2007 Apr; 367(5):1246-57. PubMed ID: 17316680
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The NAD(+)-dependent Sir2p histone deacetylase is a negative regulator of chromosomal DNA replication.
    Pappas DL; Frisch R; Weinreich M
    Genes Dev; 2004 Apr; 18(7):769-81. PubMed ID: 15082529
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Human Sir2 and the 'silencing' of p53 activity.
    Smith J
    Trends Cell Biol; 2002 Sep; 12(9):404-6. PubMed ID: 12220851
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.