BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 18775457)

  • 1. A potent reporter applicable to the monitoring of caspase-3-dependent proteolytic cleavage.
    Park K; Kang HJ; Ahn J; Yi SY; Han SH; Park HJ; Chung SJ; Chung BH; Kim M
    J Biotechnol; 2008 Nov; 138(1-2):17-23. PubMed ID: 18775457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SPR imaging-based monitoring of caspase-3 activation.
    Park K; Ahn J; Yi SY; Kim M; Chung BH
    Biochem Biophys Res Commun; 2008 Apr; 368(3):684-9. PubMed ID: 18261973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monitoring of cleavage preference for caspase-3 using recombinant protein substrates.
    Park K; Yi SY; Kim UL; Lee CS; Chung JW; Chung SJ; Kim M
    J Microbiol Biotechnol; 2009 Sep; 19(9):911-7. PubMed ID: 19809247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction of mutant TKGFP for real-time imaging of temporal dynamics of HIF-1 signal transduction activity mediated by hypoxia and reoxygenation in tumors in living mice.
    Hsieh CH; Kuo JW; Lee YJ; Chang CW; Gelovani JG; Liu RS
    J Nucl Med; 2009 Dec; 50(12):2049-57. PubMed ID: 19910419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct detection of caspase-3 activation in single live cells by cross-correlation analysis.
    Saito K; Wada I; Tamura M; Kinjo M
    Biochem Biophys Res Commun; 2004 Nov; 324(2):849-54. PubMed ID: 15474505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New high-throughput screening protease assay based upon supramolecular self-assembly.
    Zhou Z; Tang Y; Whitten DG; Achyuthan KE
    ACS Appl Mater Interfaces; 2009 Jan; 1(1):162-70. PubMed ID: 20355768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and synthesis of highly sensitive fluorogenic substrates for glutathione S-transferase and application for activity imaging in living cells.
    Fujikawa Y; Urano Y; Komatsu T; Hanaoka K; Kojima H; Terai T; Inoue H; Nagano T
    J Am Chem Soc; 2008 Nov; 130(44):14533-43. PubMed ID: 18841967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of enhanced green fluorescent protein to determine pepsin at high sensitivity.
    Malik A; Rudolph R; Söhling B
    Anal Biochem; 2005 May; 340(2):252-8. PubMed ID: 15840498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nimesulide, a selective COX-2 inhibitor, acts synergistically with ionizing radiation against A549 human lung cancer cells through the activation of caspase-8 and caspase-3.
    Kim BM; Won J; Maeng KA; Han YS; Yun YS; Hong SH
    Int J Oncol; 2009 May; 34(5):1467-73. PubMed ID: 19360361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuroprotective effects of caspase-3 inhibition on functional recovery and tissue sparing after acute spinal cord injury.
    Citron BA; Arnold PM; Haynes NG; Ameenuddin S; Farooque M; Santacruz K; Festoff BW
    Spine (Phila Pa 1976); 2008 Oct; 33(21):2269-77. PubMed ID: 18827691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A membrane-bound FRET-based caspase sensor for detection of apoptosis using fluorescence lifetime and total internal reflection microscopy.
    Angres B; Steuer H; Weber P; Wagner M; Schneckenburger H
    Cytometry A; 2009 May; 75(5):420-7. PubMed ID: 19097170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peptide substrate for caspase-3 with 2-aminoacridone as reporting group.
    Lozanov V; Ivanov IP; Benkova B; Mitev V
    Amino Acids; 2009 Mar; 36(3):581-6. PubMed ID: 18597040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of a stable mammalian cell line for simultaneous expression of multiple genes by using 2A peptide-based lentiviral vector.
    Hu T; Fu Q; Chen P; Zhang K; Guo D
    Biotechnol Lett; 2009 Mar; 31(3):353-9. PubMed ID: 19034387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetically encoded far-red fluorescent sensors for caspase-3 activity.
    Zlobovskaya OA; Sergeeva TF; Shirmanova MV; Dudenkova VV; Sharonov GV; Zagaynova EV; Lukyanov KA
    Biotechniques; 2016 Feb; 60(2):62-8. PubMed ID: 26842350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of a dual-tag system for gene expression, protein affinity purification and fusion protein processing.
    Motejadded H; Altenbuchner J
    Biotechnol Lett; 2009 Apr; 31(4):543-9. PubMed ID: 19127343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assays of endogenous caspase activities: a comparison of mass spectrometry and fluorescence formats.
    Su J; Rajapaksha TW; Peter ME; Mrksich M
    Anal Chem; 2006 Jul; 78(14):4945-51. PubMed ID: 16841915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FRET-based optical assay for monitoring riboswitch activation.
    Harbaugh S; Kelley-Loughnane N; Davidson M; Narayanan L; Trott S; Chushak YG; Stone MO
    Biomacromolecules; 2009 May; 10(5):1055-60. PubMed ID: 19358526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Establishment of an indicator cell line to quantify bovine foamy virus infection.
    Ma Z; Hao P; Yao X; Liu C; Tan J; Liu L; Yang R; Geng Y; Chen Q; Qiao W
    J Basic Microbiol; 2008 Aug; 48(4):278-83. PubMed ID: 18720504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel bicistronic sensor vector for detecting caspase-3 activation.
    Vagner T; Mouravlev A; Young D
    J Pharmacol Toxicol Methods; 2015; 72():11-8. PubMed ID: 25482476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative measurement of caspase-3 activity in a living starfish egg.
    Sakaue M; Motoyama Y; Yamamoto K; Shiba T; Teshima T; Chiba K
    Biochem Biophys Res Commun; 2006 Dec; 350(4):878-83. PubMed ID: 17045246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.