BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 18775708)

  • 1. The role of a conserved histidine residue in a pyruvate-specific Class II aldolase.
    Wang W; Seah SY
    FEBS Lett; 2008 Oct; 582(23-24):3385-8. PubMed ID: 18775708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purification and biochemical characterization of a pyruvate-specific class II aldolase, HpaI.
    Wang W; Seah SY
    Biochemistry; 2005 Jul; 44(27):9447-55. PubMed ID: 15996099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of two metal-dependent pyruvate aldolases related by convergent evolution: substrate specificity, kinetic mechanism, and substrate channeling.
    Wang W; Baker P; Seah SY
    Biochemistry; 2010 May; 49(17):3774-82. PubMed ID: 20364820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-guided redesign of D-fructose-6-phosphate aldolase from E. coli: remarkable activity and selectivity towards acceptor substrates by two-point mutation.
    Gutierrez M; Parella T; Joglar J; Bujons J; Clapés P
    Chem Commun (Camb); 2011 May; 47(20):5762-4. PubMed ID: 21499643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acid-base catalysis in the extradiol catechol dioxygenase reaction mechanism: site-directed mutagenesis of His-115 and His-179 in Escherichia coli 2,3-dihydroxyphenylpropionate 1,2-dioxygenase (MhpB).
    Mendel S; Arndt A; Bugg TD
    Biochemistry; 2004 Oct; 43(42):13390-6. PubMed ID: 15491145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional properties of the histidine-aspartate ion pair of flavocytochrome b2 (L-lactate dehydrogenase): substitution of Asp282 with asparagine.
    Gondry M; Lederer F
    Biochemistry; 1996 Jul; 35(26):8587-94. PubMed ID: 8679620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of reaction intermediates in pyruvate class II aldolase: substrate cleavage, enolate stabilization, and substrate specificity.
    Coincon M; Wang W; Sygusch J; Seah SY
    J Biol Chem; 2012 Oct; 287(43):36208-21. PubMed ID: 22908224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of enzymatic activities in the orotidine 5'-monophosphate decarboxylase suprafamily: enhancing the promiscuous D-arabino-hex-3-ulose 6-phosphate synthase reaction catalyzed by 3-keto-L-gulonate 6-phosphate decarboxylase.
    Yew WS; Akana J; Wise EL; Rayment I; Gerlt JA
    Biochemistry; 2005 Feb; 44(6):1807-15. PubMed ID: 15697206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aspartate-107 and leucine-109 facilitate efficient coupling of glutamine hydrolysis to CTP synthesis by Escherichia coli CTP synthase.
    Iyengar A; Bearne SL
    Biochem J; 2003 Feb; 369(Pt 3):497-507. PubMed ID: 12383057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for a catalytic Mg2+ ion and effect of phosphate on the activity of Escherichia coli phosphofructokinase-2: regulatory properties of a ribokinase family member.
    Parducci RE; Cabrera R; Baez M; Guixé V
    Biochemistry; 2006 Aug; 45(30):9291-9. PubMed ID: 16866375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and mechanism of HpcH: a metal ion dependent class II aldolase from the homoprotocatechuate degradation pathway of Escherichia coli.
    Rea D; Fülöp V; Bugg TD; Roper DI
    J Mol Biol; 2007 Nov; 373(4):866-76. PubMed ID: 17881002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of dihydroneopterin aldolase: functional roles of the conserved active site glutamate and lysine residues.
    Wang Y; Li Y; Yan H
    Biochemistry; 2006 Dec; 45(51):15232-9. PubMed ID: 17176045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single amino acid substitutions disrupt tetramer formation in the dihydroneopterin aldolase enzyme of Pneumocystis carinii.
    Thomas MC; Ballantine SP; Bethell SS; Bains S; Kellam P; Delves CJ
    Biochemistry; 1998 Aug; 37(33):11629-36. PubMed ID: 9709001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-function relationships in Escherichia coli adenylate cyclase.
    Linder JU
    Biochem J; 2008 Nov; 415(3):449-54. PubMed ID: 18620542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrate positioning by His92 is important in catalysis by purple acid phosphatase.
    Funhoff EG; Wang Y; Andersson G; Averill BA
    FEBS J; 2005 Jun; 272(12):2968-77. PubMed ID: 15955057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing the molecular basis of substrate specificity, stereospecificity, and catalysis in the class II pyruvate aldolase, BphI.
    Baker P; Carere J; Seah SY
    Biochemistry; 2011 May; 50(17):3559-69. PubMed ID: 21425833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the activity and folding of the glutathione transferase from Escherichia coli and the roles of residues Cys(10) and His(106).
    Wang XY; Zhang ZR; Perrett S
    Biochem J; 2009 Jan; 417(1):55-64. PubMed ID: 18778244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Residues in the conserved His domain of fruit fly tRNase Z that function in catalysis are not involved in substrate recognition or binding.
    Zareen N; Yan H; Hopkinson A; Levinger L
    J Mol Biol; 2005 Jul; 350(2):189-99. PubMed ID: 15935379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A critical role for the histidine residues in the catalytic function of acyl-CoA:cholesterol acyltransferase catalysis: evidence for catalytic difference between ACAT1 and ACAT2.
    An S; Cho KH; Lee WS; Lee JO; Paik YK; Jeong TS
    FEBS Lett; 2006 May; 580(11):2741-9. PubMed ID: 16647063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of biochemical and putative biological role of a xenolog from Escherichia coli using structural analysis.
    Bhaskar V; Kumar M; Manicka S; Tripathi S; Venkatraman A; Krishnaswamy S
    Proteins; 2011 Apr; 79(4):1132-42. PubMed ID: 21294156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.