These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 18776038)
1. A signaling-regulated, short-chain dehydrogenase of Stagonospora nodorum regulates asexual development. Tan KC; Heazlewood JL; Millar AH; Thomson G; Oliver RP; Solomon PS Eukaryot Cell; 2008 Nov; 7(11):1916-29. PubMed ID: 18776038 [TBL] [Abstract][Full Text] [Related]
2. Proteomic identification of extracellular proteins regulated by the Gna1 Galpha subunit in Stagonospora nodorum. Tan KC; Heazlewood JL; Millar AH; Oliver RP; Solomon PS Mycol Res; 2009 May; 113(5):523-31. PubMed ID: 19284980 [TBL] [Abstract][Full Text] [Related]
3. A comparative analysis of the heterotrimeric G-protein Gα, Gβ and Gγ subunits in the wheat pathogen Stagonospora nodorum. Gummer JP; Trengove RD; Oliver RP; Solomon PS BMC Microbiol; 2012 Jul; 12():131. PubMed ID: 22759704 [TBL] [Abstract][Full Text] [Related]
4. Dissecting the role of G-protein signalling in primary metabolism in the wheat pathogen Stagonospora nodorum. Gummer JPA; Trengove RD; Oliver RP; Solomon PS Microbiology (Reading); 2013 Sep; 159(Pt 9):1972-1985. PubMed ID: 23744904 [TBL] [Abstract][Full Text] [Related]
5. Mannitol is required for asexual sporulation in the wheat pathogen Stagonospora nodorum (glume blotch). Solomon PS; Waters OD; Jörgens CI; Lowe RG; Rechberger J; Trengove RD; Oliver RP Biochem J; 2006 Oct; 399(2):231-9. PubMed ID: 16859492 [TBL] [Abstract][Full Text] [Related]
6. The disruption of a Galpha subunit sheds new light on the pathogenicity of Stagonospora nodorum on wheat. Solomon PS; Tan KC; Sanchez P; Cooper RM; Oliver RP Mol Plant Microbe Interact; 2004 May; 17(5):456-66. PubMed ID: 15141949 [TBL] [Abstract][Full Text] [Related]
7. Trehalose biosynthesis is involved in sporulation of Stagonospora nodorum. Lowe RG; Lord M; Rybak K; Trengove RD; Oliver RP; Solomon PS Fungal Genet Biol; 2009 May; 46(5):381-9. PubMed ID: 19233304 [TBL] [Abstract][Full Text] [Related]
8. Quantitative proteomic analysis of G-protein signalling in Stagonospora nodorum using isobaric tags for relative and absolute quantification. Casey T; Solomon PS; Bringans S; Tan KC; Oliver RP; Lipscombe R Proteomics; 2010 Jan; 10(1):38-47. PubMed ID: 19882661 [TBL] [Abstract][Full Text] [Related]
9. Investigating the role of calcium/calmodulin-dependent protein kinases in Stagonospora nodorum. Solomon PS; Rybak K; Trengove RD; Oliver RP Mol Microbiol; 2006 Oct; 62(2):367-81. PubMed ID: 17020577 [TBL] [Abstract][Full Text] [Related]
10. The transcription factor StuA regulates central carbon metabolism, mycotoxin production, and effector gene expression in the wheat pathogen Stagonospora nodorum. IpCho SV; Tan KC; Koh G; Gummer J; Oliver RP; Trengove RD; Solomon PS Eukaryot Cell; 2010 Jul; 9(7):1100-8. PubMed ID: 20495056 [TBL] [Abstract][Full Text] [Related]
11. Characterising the role of GABA and its metabolism in the wheat pathogen Stagonospora nodorum. Mead O; Thynne E; Winterberg B; Solomon PS PLoS One; 2013; 8(11):e78368. PubMed ID: 24265684 [TBL] [Abstract][Full Text] [Related]
12. Stagonospora nodorum: from pathology to genomics and host resistance. Oliver RP; Friesen TL; Faris JD; Solomon PS Annu Rev Phytopathol; 2012; 50():23-43. PubMed ID: 22559071 [TBL] [Abstract][Full Text] [Related]
13. The Velvet transcription factor PnVeA regulates necrotrophic effectors and secondary metabolism in the wheat pathogen Parastagonospora nodorum. Morikawa S; Verdonk C; John E; Lenzo L; Sbaraini N; Turo C; Li H; Jiang D; Chooi YH; Tan KC BMC Microbiol; 2024 Aug; 24(1):299. PubMed ID: 39127645 [TBL] [Abstract][Full Text] [Related]
14. Pathogenicity of Stagonospora nodorum requires malate synthase. Solomon PS; Lee RC; Wilson TJ; Oliver RP Mol Microbiol; 2004 Aug; 53(4):1065-73. PubMed ID: 15306011 [TBL] [Abstract][Full Text] [Related]
15. Malayamycin, a new streptomycete antifungal compound, specifically inhibits sporulation of Stagonospora nodorum (Berk) Castell and Germano, the cause of wheat glume blotch disease. Li W; Csukai M; Corran A; Crowley P; Solomon PS; Oliver RP Pest Manag Sci; 2008 Dec; 64(12):1294-302. PubMed ID: 18683907 [TBL] [Abstract][Full Text] [Related]
16. A Histone Deacetylase, Magnaporthe oryzae RPD3, Regulates Reproduction and Pathogenic Development in the Rice Blast Fungus. Lee SH; Farh ME; Lee J; Oh YT; Cho E; Park J; Son H; Jeon J mBio; 2021 Dec; 12(6):e0260021. PubMed ID: 34781734 [TBL] [Abstract][Full Text] [Related]
17. A functionally conserved Zn Rybak K; See PT; Phan HT; Syme RA; Moffat CS; Oliver RP; Tan KC Mol Plant Pathol; 2017 Apr; 18(3):420-434. PubMed ID: 27860150 [TBL] [Abstract][Full Text] [Related]
18. G(alpha) and Gbeta proteins regulate the cyclic AMP pathway that is required for development and pathogenicity of the phytopathogen Mycosphaerella graminicola. Mehrabi R; Ben M'Barek S; van der Lee TA; Waalwijk C; de Wit PJ; Kema GH Eukaryot Cell; 2009 Jul; 8(7):1001-13. PubMed ID: 19411619 [TBL] [Abstract][Full Text] [Related]
19. Proteinaceous toxins of Stagonospora nodorum, the causal agent of triticale leaf and glume blotch. Walczewski J; Arseniuk E Commun Agric Appl Biol Sci; 2014; 79(4):228-32. PubMed ID: 26072591 [TBL] [Abstract][Full Text] [Related]
20. Virulence Factors of the Fungal Pathogen Nuzhnaya T; Veselova S; Burkhanova G; Maksimov I Front Biosci (Elite Ed); 2023 Oct; 15(4):22. PubMed ID: 38163933 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]