These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 18776228)

  • 1. The use of light to investigate and modulate DNA and RNA conformations.
    Sen D
    Nucleic Acids Symp Ser (Oxf); 2008; (52):11-2. PubMed ID: 18776228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversible photo-regulation of a hammerhead ribozyme using a diffusible effector.
    Lee HW; Robinson SG; Bandyopadhyay S; Mitchell RH; Sen D
    J Mol Biol; 2007 Aug; 371(5):1163-73. PubMed ID: 17619022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA aptamer-mediated regulation of the hairpin ribozyme by human alpha-thrombin.
    Najafi-Shoushtari SH; Famulok M
    Blood Cells Mol Dis; 2007; 38(1):19-24. PubMed ID: 17150386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterogeneity and dynamics of the ligand recognition mode in purine-sensing riboswitches.
    Jain N; Zhao L; Liu JD; Xia T
    Biochemistry; 2010 May; 49(17):3703-14. PubMed ID: 20345178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A ribonucleopeptide module for effective conversion of an RNA aptamer to a fluorescent sensor.
    Liew FF; Hayashi H; Nakano S; Nakata E; Morii T
    Bioorg Med Chem; 2011 Oct; 19(19):5771-5. PubMed ID: 21906952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Artificial ribozyme switches containing natural riboswitch aptamer domains.
    Wieland M; Benz A; Klauser B; Hartig JS
    Angew Chem Int Ed Engl; 2009; 48(15):2715-8. PubMed ID: 19156802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A simple fluorescent biosensor for theophylline based on its RNA aptamer.
    Rankin CJ; Fuller EN; Hamor KH; Gabarra SA; Shields TP
    Nucleosides Nucleotides Nucleic Acids; 2006; 25(12):1407-24. PubMed ID: 17067962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aptamer to ribozyme: the intrinsic catalytic potential of a small RNA.
    Brackett DM; Dieckmann T
    Chembiochem; 2006 May; 7(5):839-43. PubMed ID: 16566048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro selection and characterization of DNA aptamers recognizing chloramphenicol.
    Mehta J; Van Dorst B; Rouah-Martin E; Herrebout W; Scippo ML; Blust R; Robbens J
    J Biotechnol; 2011 Oct; 155(4):361-9. PubMed ID: 21839787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A light-responsive RNA aptamer for an azobenzene derivative.
    Lotz TS; Halbritter T; Kaiser C; Rudolph MM; Kraus L; Groher F; Steinwand S; Wachtveitl J; Heckel A; Suess B
    Nucleic Acids Res; 2019 Feb; 47(4):2029-2040. PubMed ID: 30517682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light-up Hoechst-DNA aptamer pair: generation of an aptamer-selective fluorophore from a conventional DNA-staining dye.
    Sando S; Narita A; Aoyama Y
    Chembiochem; 2007 Oct; 8(15):1795-803. PubMed ID: 17806095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retention of function in the DNA homolog of the RNA dopamine aptamer.
    Walsh R; DeRosa MC
    Biochem Biophys Res Commun; 2009 Oct; 388(4):732-5. PubMed ID: 19699181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aptazyme-based riboswitches as label-free and detector-free sensors for cofactors.
    Ogawa A; Maeda M
    Bioorg Med Chem Lett; 2007 Jun; 17(11):3156-60. PubMed ID: 17391960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aptamers targeted to an RNA hairpin show improved specificity compared to that of complementary oligonucleotides.
    Darfeuille F; Reigadas S; Hansen JB; Orum H; Di Primo C; Toulmé JJ
    Biochemistry; 2006 Oct; 45(39):12076-82. PubMed ID: 17002307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutational analysis of a signaling aptamer suggests a mechanism for ligand-triggered structure-switching.
    Vandenengel JE; Morse DP
    Biochem Biophys Res Commun; 2009 Jan; 378(1):51-6. PubMed ID: 19010303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of circular streptavidin RNA aptamer in vivo.
    Umekage S; Kikuchi Y
    Nucleic Acids Symp Ser (Oxf); 2007; (51):391-2. PubMed ID: 18029751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bifunctional combined aptamer for simultaneous separation and detection of thrombin.
    Bing T; Liu X; Cheng X; Cao Z; Shangguan D
    Biosens Bioelectron; 2010 Feb; 25(6):1487-92. PubMed ID: 19959350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and testing of aptamer-based electrochemical biosensors for proteins and small molecules.
    Cheng AK; Sen D; Yu HZ
    Bioelectrochemistry; 2009 Nov; 77(1):1-12. PubMed ID: 19473883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA aptamer folding on gold nanoparticles: from colloid chemistry to biosensors.
    Zhao W; Chiuman W; Lam JC; McManus SA; Chen W; Cui Y; Pelton R; Brook MA; Li Y
    J Am Chem Soc; 2008 Mar; 130(11):3610-8. PubMed ID: 18293985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RNA aptamers that reversibly bind to photoresponsive peptide.
    Hayashi G; Hagihara M; Nakatani K
    Nucleic Acids Symp Ser (Oxf); 2008; (52):703-4. PubMed ID: 18776574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.