These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 18776258)
61. Fluorophore-PNA-Quencher/Quencher-DNA probe for miRNA detection. Tabara K; Watanabe K; Shigeto H; Yamamura S; Kishi T; Kitamatsu M; Ohtsuki T Bioorg Med Chem Lett; 2021 Nov; 51():128359. PubMed ID: 34534675 [TBL] [Abstract][Full Text] [Related]
62. A microRNA detection system based on padlock probes and rolling circle amplification. Jonstrup SP; Koch J; Kjems J RNA; 2006 Sep; 12(9):1747-52. PubMed ID: 16888321 [TBL] [Abstract][Full Text] [Related]
63. Synchronous detection of ebolavirus conserved RNA sequences and ebolavirus-encoded miRNA-like fragment based on a zwitterionic copper (II) metal-organic framework. Qiu GH; Weng ZH; Hu PP; Duan WJ; Xie BP; Sun B; Tang XY; Chen JX Talanta; 2018 Apr; 180():396-402. PubMed ID: 29332829 [TBL] [Abstract][Full Text] [Related]
64. Real-time expression profiling of microRNA precursors in human cancer cell lines. Jiang J; Lee EJ; Gusev Y; Schmittgen TD Nucleic Acids Res; 2005; 33(17):5394-403. PubMed ID: 16192569 [TBL] [Abstract][Full Text] [Related]
65. Phenanthroline-linked berberine dimer and fluorophore-tagged DNA conjugate for the selective detection of microRNA-185: Experimental and molecular docking studies. Hu XM; Li RT; Zhang MM; Wu KY; Li HH; Huang NH; Sun B; Chen JX Anal Chim Acta; 2019 Mar; 1051():153-159. PubMed ID: 30661612 [TBL] [Abstract][Full Text] [Related]
66. Isothermal sensitive detection of microRNA using an autonomous DNA machine recycling output as input. Ogawa A Bioorg Med Chem Lett; 2010 Oct; 20(20):6056-60. PubMed ID: 20813525 [TBL] [Abstract][Full Text] [Related]
67. Graphene oxide for rapid microRNA detection. Lu Z; Zhang L; Deng Y; Li S; He N Nanoscale; 2012 Sep; 4(19):5840-2. PubMed ID: 22895793 [TBL] [Abstract][Full Text] [Related]
68. Universal drag tag for direct quantitative analysis of multiple microRNAs. Wegman DW; Cherney LT; Yousef GM; Krylov SN Anal Chem; 2013 Jul; 85(13):6518-23. PubMed ID: 23742626 [TBL] [Abstract][Full Text] [Related]
69. In situ monitoring of cytoplasmic precursor and mature microRNA using gold nanoparticle and graphene oxide composite probes. Hong M; Sun H; Xu L; Yue Q; Shen G; Li M; Tang B; Li CZ Anal Chim Acta; 2018 Aug; 1021():129-139. PubMed ID: 29681279 [TBL] [Abstract][Full Text] [Related]
70. Rational design and development of a universal baby spinach-based sensing platform for the detection of biomolecules. Ji D; Li Z; Kwok CK Analyst; 2019 Dec; 144(24):7173-7177. PubMed ID: 31750452 [TBL] [Abstract][Full Text] [Related]
71. Simultaneously sensitive detection of multiple miRNAs based on a strand displacement amplification. Tian T; Xiao H; Zhang X; Peng S; Zhang X; Guo S; Wang S; Liu S; Zhou X; Meyers C; Zhou X Chem Commun (Camb); 2013 Jan; 49(1):75-7. PubMed ID: 23159915 [TBL] [Abstract][Full Text] [Related]
72. Multiplexed microRNA detection using lanthanide-labeled DNA probes and laser ablation inductively coupled plasma mass spectrometry. de Bang TC; Shah P; Cho SK; Yang SW; Husted S Anal Chem; 2014 Jul; 86(14):6823-6. PubMed ID: 24945747 [TBL] [Abstract][Full Text] [Related]
73. Detection of pre-mRNA splicing in vitro by an RNA-templated fluorogenic reaction. Tamura Y; Furukawa K; Yoshimoto R; Kawai Y; Yoshida M; Tsuneda S; Ito Y; Abe H Bioorg Med Chem Lett; 2012 Dec; 22(23):7248-51. PubMed ID: 23072867 [TBL] [Abstract][Full Text] [Related]
74. Design and Characterization of a Singly Labeled Fluorescent Smart Probe for In Vitro Detection of miR-21. Oladepo SA Appl Spectrosc; 2018 Jan; 72(1):79-88. PubMed ID: 28946749 [TBL] [Abstract][Full Text] [Related]
75. Large-Stokes-shift-based folded DNA probing systems targeting DNA and miRNA 21 with signal amplification. Le BH; Nguyen TT; Joo HN; Seo YJ Bioorg Med Chem; 2018 Sep; 26(17):4881-4885. PubMed ID: 30170926 [TBL] [Abstract][Full Text] [Related]
76. One-step, multiplexed fluorescence detection of microRNAs based on duplex-specific nuclease signal amplification. Yin BC; Liu YQ; Ye BC J Am Chem Soc; 2012 Mar; 134(11):5064-7. PubMed ID: 22394262 [TBL] [Abstract][Full Text] [Related]
77. Size-Discriminative DNA Nanocage Framework Enables Sensitive and High-Fidelity Imaging of Mature MicroRNA in Living Cells. Li X; Yang F; Li S; Yuan R; Xiang Y Anal Chem; 2022 Jul; 94(27):9927-9933. PubMed ID: 35749565 [TBL] [Abstract][Full Text] [Related]
78. In-solution multiplex miRNA detection using DNA-templated silver nanocluster probes. Shah P; Thulstrup PW; Cho SK; Bhang YJ; Ahn JC; Choi SW; Bjerrum MJ; Yang SW Analyst; 2014 May; 139(9):2158-66. PubMed ID: 24616905 [TBL] [Abstract][Full Text] [Related]
79. Quencher-free fluorescent method for homogeneously sensitive detection of microRNAs in human lung tissues. Zhu G; Liang L; Zhang CY Anal Chem; 2014 Nov; 86(22):11410-6. PubMed ID: 25356523 [TBL] [Abstract][Full Text] [Related]
80. Endogenous Enzyme-Driven Amplified DNA Nanocage Probe for Selective and Sensitive Imaging of Mature MicroRNAs in Living Cancer Cells. Gao Y; Gong C; Chen M; Huan S; Zhang XB; Ke G Anal Chem; 2024 Jun; 96(23):9453-9459. PubMed ID: 38818873 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]