These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 18776258)
81. A homogeneous fluorescence sensing platform with water-soluble carbon nanoparticles for detection of microRNA and nuclease activity. Wang L; Cheng Y; Wang H; Li Z Analyst; 2012 Aug; 137(16):3667-72. PubMed ID: 22801584 [TBL] [Abstract][Full Text] [Related]
82. Highly selective and sensitive detection of miRNA based on toehold-mediated strand displacement reaction and DNA tetrahedron substrate. Li W; Jiang W; Ding Y; Wang L Biosens Bioelectron; 2015 Sep; 71():401-406. PubMed ID: 25950935 [TBL] [Abstract][Full Text] [Related]
83. Theoretical estimation of drag tag lengths for direct quantitative analysis of multiple miRNAs (DQAMmiR). Cherney LT; Krylov SN Analyst; 2013 Jan; 138(2):553-8. PubMed ID: 23172392 [TBL] [Abstract][Full Text] [Related]
84. Hybridization chain reaction engineered dsDNA for Cu metallization: an enzyme-free platform for amplified detection of cancer cells and microRNAs. Zhang Y; Chen Z; Tao Y; Wang Z; Ren J; Qu X Chem Commun (Camb); 2015 Jul; 51(57):11496-9. PubMed ID: 26097912 [TBL] [Abstract][Full Text] [Related]
85. Fluorescent quenching-based quantitative detection of specific DNA/RNA using a BODIPY((R)) FL-labeled probe or primer. Kurata S; Kanagawa T; Yamada K; Torimura M; Yokomaku T; Kamagata Y; Kurane R Nucleic Acids Res; 2001 Mar; 29(6):E34. PubMed ID: 11239011 [TBL] [Abstract][Full Text] [Related]
86. Polycation-assisted DNA detection by reduction triggered fluorescence amplification probe. Saneyoshi H; Shimada N; Maruyama A; Ito Y; Abe H Bioorg Med Chem Lett; 2013 Dec; 23(24):6851-3. PubMed ID: 24176394 [TBL] [Abstract][Full Text] [Related]
87. Ro JJ; Lee HJ; Kim BH Chem Commun (Camb); 2018 Jul; 54(54):7471-7474. PubMed ID: 29915829 [TBL] [Abstract][Full Text] [Related]
88. Backbone-modified molecular beacons for highly sensitive and selective detection of microRNAs based on duplex specific nuclease signal amplification. Lin X; Zhang C; Huang Y; Zhu Z; Chen X; Yang CJ Chem Commun (Camb); 2013 Aug; 49(65):7243-5. PubMed ID: 23842896 [TBL] [Abstract][Full Text] [Related]
89. Colorimetric PCR-Based microRNA Detection Method Based on Small Organic Dye and Single Enzyme. Dong J; Chen G; Wang W; Huang X; Peng H; Pu Q; Du F; Cui X; Deng Y; Tang Z Anal Chem; 2018 Jun; 90(12):7107-7111. PubMed ID: 29847923 [TBL] [Abstract][Full Text] [Related]
90. Lab in a Tube: Sensitive Detection of MicroRNAs in Urine Samples from Bladder Cancer Patients Using a Single-Label DNA Probe with AIEgens. Min X; Zhuang Y; Zhang Z; Jia Y; Hakeem A; Zheng F; Cheng Y; Tang BZ; Lou X; Xia F ACS Appl Mater Interfaces; 2015 Aug; 7(30):16813-8. PubMed ID: 26180929 [TBL] [Abstract][Full Text] [Related]
91. Multiplexed detection of microRNAs by tuning DNA-scaffolded silver nanoclusters. Zhang M; Liu YQ; Yu CY; Yin BC; Ye BC Analyst; 2013 Sep; 138(17):4812-7. PubMed ID: 23814783 [TBL] [Abstract][Full Text] [Related]
92. Kinetic fingerprinting to identify and count single nucleic acids. Johnson-Buck A; Su X; Giraldez MD; Zhao M; Tewari M; Walter NG Nat Biotechnol; 2015 Jul; 33(7):730-2. PubMed ID: 26098451 [TBL] [Abstract][Full Text] [Related]
93. DNA strand-displacement-induced fluorescence enhancement for highly sensitive and selective assay of multiple microRNA in cancer cells. Wu P; Tu Y; Qian Y; Zhang H; Cai C Chem Commun (Camb); 2014 Jan; 50(8):1012-4. PubMed ID: 24309440 [TBL] [Abstract][Full Text] [Related]
94. MicroRNA Detection Using a Double Molecular Beacon Approach: Distinguishing Between miRNA and Pre-miRNA. James AM; Baker MB; Bao G; Searles CD Theranostics; 2017; 7(3):634-646. PubMed ID: 28255356 [TBL] [Abstract][Full Text] [Related]
95. Highly sensitive and selective strategy for microRNA detection based on WS2 nanosheet mediated fluorescence quenching and duplex-specific nuclease signal amplification. Xi Q; Zhou DM; Kan YY; Ge J; Wu ZK; Yu RQ; Jiang JH Anal Chem; 2014 Feb; 86(3):1361-5. PubMed ID: 24446758 [TBL] [Abstract][Full Text] [Related]
96. Multivalent aptamer-RNA based fluorescent probes for carrier-free detection of cellular microRNA-34a in mucin1-expressing cancer cells. Kim J; Lee E; Kang YY; Mok H Chem Commun (Camb); 2015 May; 51(43):9038-41. PubMed ID: 25939820 [TBL] [Abstract][Full Text] [Related]
97. Quantitation of microRNAs using a modified Invader assay. Allawi HT; Dahlberg JE; Olson S; Lund E; Olson M; Ma WP; Takova T; Neri BP; Lyamichev VI RNA; 2004 Jul; 10(7):1153-61. PubMed ID: 15208450 [TBL] [Abstract][Full Text] [Related]
98. Northern blotting analysis of microRNAs, their precursors and RNA interference triggers. Koscianska E; Starega-Roslan J; Sznajder LJ; Olejniczak M; Galka-Marciniak P; Krzyzosiak WJ BMC Mol Biol; 2011 Apr; 12():14. PubMed ID: 21481235 [TBL] [Abstract][Full Text] [Related]
99. FREMSA: A Method That Provides Direct Evidence of the Interaction between microRNA and mRNA. Yu D; Chen S; Li D; Knox B; Guo L; Ning B Methods Mol Biol; 2020; 2102():557-566. PubMed ID: 31989576 [TBL] [Abstract][Full Text] [Related]
100. A ratiometric fluorescent dye for the detection of glutathione in live cells and liver cancer tissue. Zhai D; Lee SC; Yun SW; Chang YT Chem Commun (Camb); 2013 Aug; 49(65):7207-9. PubMed ID: 23841114 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]