BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 18776347)

  • 21. Uncoupling of the base excision and nucleotide incision repair pathways reveals their respective biological roles.
    Ishchenko AA; Deprez E; Maksimenko A; Brochon JC; Tauc P; Saparbaev MK
    Proc Natl Acad Sci U S A; 2006 Feb; 103(8):2564-9. PubMed ID: 16473948
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Complementation of the oxidatively damaged DNA repair defect in Cockayne syndrome A and B cells by Escherichia coli formamidopyrimidine DNA glycosylase.
    Ropolo M; Degan P; Foresta M; D'Errico M; Lasigliè D; Dogliotti E; Casartelli G; Zupo S; Poggi A; Frosina G
    Free Radic Biol Med; 2007 Jun; 42(12):1807-17. PubMed ID: 17512460
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Repair of imidazole ring-opened purines in DNA: overproduction of the formamidopyrimidine-DNA glycosylase of Escherichia coli using plasmids containing the fpg+ gene.
    O'Connor TR; Boiteux S; Laval J
    Ann Ist Super Sanita; 1989; 25(1):27-31. PubMed ID: 2665603
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Surface plasmon resonance spectro-imaging sensor for biomolecular surface interaction characterization.
    Bardin F; Bellemain A; Roger G; Canva M
    Biosens Bioelectron; 2009 Mar; 24(7):2100-5. PubMed ID: 19084391
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Repair activity of base and nucleotide excision repair enzymes for guanine lesions induced by nitrosative stress.
    Nakano T; Katafuchi A; Shimizu R; Terato H; Suzuki T; Tauchi H; Makino K; Skorvaga M; Van Houten B; Ide H
    Nucleic Acids Res; 2005; 33(7):2181-91. PubMed ID: 15831791
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of DNA repair enzymes in the cellular resistance to oxidative stress.
    Laval J
    Pathol Biol (Paris); 1996 Jan; 44(1):14-24. PubMed ID: 8734295
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [New non-hydrolyzable substrate analogs for 8-oxoguanine-DNA glycosylases].
    Taraneneko MV; Volkov EM; Saparbarv MK; Kuznetsov SA
    Mol Biol (Mosk); 2004; 38(5):858-68. PubMed ID: 15554188
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spontaneous mutation, oxidative DNA damage, and the roles of base and nucleotide excision repair in the yeast Saccharomyces cerevisiae.
    Scott AD; Neishabury M; Jones DH; Reed SH; Boiteux S; Waters R
    Yeast; 1999 Feb; 15(3):205-18. PubMed ID: 10077187
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Substrate discrimination by formamidopyrimidine-DNA glycosylase: distinguishing interactions within the active site.
    Perlow-Poehnelt RA; Zharkov DO; Grollman AP; Broyde S
    Biochemistry; 2004 Dec; 43(51):16092-105. PubMed ID: 15610004
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhanced mutagenic potential of 8-oxo-7,8-dihydroguanine when present within a clustered DNA damage site.
    Pearson CG; Shikazono N; Thacker J; O'Neill P
    Nucleic Acids Res; 2004; 32(1):263-70. PubMed ID: 14715924
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Alteration of DNA base excision repair enzymes hMYH and hOGG1 in hydrogen peroxide resistant transformed human breast cells.
    Gu Y; Desai T; Gutierrez PL; Lu AL
    Med Sci Monit; 2001; 7(5):861-8. PubMed ID: 11535925
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis, biophysical and repair studies of O6-2'-deoxyguanosine adducts by Escherichia coli OGT.
    Schoonhoven NM; Murphy SP; O'Flaherty DK; Noronha AM; Kornblatt MJ; Wilds CJ
    Nucleic Acids Symp Ser (Oxf); 2008; (52):449-50. PubMed ID: 18776447
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inhibition of DNA repair glycosylases by base analogs and tryptophan pyrolysate, Trp-P-1.
    Speina E; Cieśla JM; Graziewicz MA; Laval J; Kazimierczuk Z; Tudek B
    Acta Biochim Pol; 2005; 52(1):167-78. PubMed ID: 15827615
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assays for the repair of oxidative damage by formamidopyrimidine glycosylase (Fpg) and 8-oxoguanine DNA glycosylase (OGG-1).
    Watson AJ; Margison GP
    Methods Mol Biol; 2000; 152():17-32. PubMed ID: 10957965
    [No Abstract]   [Full Text] [Related]  

  • 35. The influence of cdG on 8-oxodG excision by OGG1 and FPG glycosylases.
    Szewczuk M; Karwowski B
    Acta Biochim Pol; 2022 Mar; 69(1):227-232. PubMed ID: 35235741
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Opposite base-dependent reactions of a human base excision repair enzyme on DNA containing 7,8-dihydro-8-oxoguanine and abasic sites.
    Bjorâs M; Luna L; Johnsen B; Hoff E; Haug T; Rognes T; Seeberg E
    EMBO J; 1997 Oct; 16(20):6314-22. PubMed ID: 9321410
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Excision of imidazole ring-opened N7-hydroxyethylguanine from chloroethylnitrosourea-treated DNA by Escherichia coli formamidopyrimidine-DNA glycosylase.
    Laval J; Lopès F; Madelmont JC; Godenèche D; Meyniel G; Habraken Y; O'Connor TR; Boiteux S
    IARC Sci Publ; 1991; (105):412-6. PubMed ID: 1855891
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Base excision and nucleotide excision repair pathways in mycobacteria.
    Kurthkoti K; Varshney U
    Tuberculosis (Edinb); 2011 Nov; 91(6):533-43. PubMed ID: 21764637
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis and characterization of oligonucleotides containing a nitrogen mustard formamidopyrimidine monoadduct of deoxyguanosine.
    Christov PP; Son KJ; Rizzo CJ
    Chem Res Toxicol; 2014 Sep; 27(9):1610-8. PubMed ID: 25136769
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Purine 5',8-cyclonucleoside lesions: chemistry and biology.
    Chatgilialoglu C; Ferreri C; Terzidis MA
    Chem Soc Rev; 2011 Mar; 40(3):1368-82. PubMed ID: 21221459
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.