These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 1877654)

  • 21. Nitric oxide and angiotensin II. Glomerular and tubular interaction in the rat.
    De Nicola L; Blantz RC; Gabbai FB
    J Clin Invest; 1992 Apr; 89(4):1248-56. PubMed ID: 1556186
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Relative roles of nitric oxide, prostanoids and angiotensin II in the regulation of canine glomerular hemodynamics. A micropuncture study.
    Kramer HJ; Horacek V; Bäcker A; Vaneckova I; Heller J
    Kidney Blood Press Res; 2004; 27(1):10-7. PubMed ID: 14583658
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nitric oxide: a potential mediator of amino acid-induced renal hyperemia and hyperfiltration.
    King AJ; Troy JL; Anderson S; Neuringer JR; Gunning M; Brenner BM
    J Am Soc Nephrol; 1991 Jun; 1(12):1271-7. PubMed ID: 1912389
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nifedipine attenuates systemic and renal vasoconstriction during nitric oxide inhibition in humans.
    Dijkhorst-Oei LT; Rabelink TJ; Boer P; Koomans HA
    Hypertension; 1997 May; 29(5):1192-8. PubMed ID: 9149686
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inhibition of nitric oxide causes exaggerated natriuresis in spontaneously hypertensive rats.
    Khraibi AA
    Am J Physiol; 1994 May; 266(5 Pt 2):F762-6. PubMed ID: 8203560
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Endothelium-derived relaxing factor is important in mediating the high output state in chronic severe anemia.
    Anand IS; Chandrashekhar Y; Wander GS; Chawla LS
    J Am Coll Cardiol; 1995 May; 25(6):1402-7. PubMed ID: 7722140
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Perfusion pressure and volume status determine the microvascular response of the rat kidney to NG-monomethyl-L-arginine.
    Lockhart JC; Larson TS; Knox FG
    Circ Res; 1994 Nov; 75(5):829-35. PubMed ID: 7923628
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interaction between microvascular alpha 1- and alpha 2-adrenoceptors and endothelium-derived relaxing factor.
    Ohyanagi M; Nishigaki K; Faber JE
    Circ Res; 1992 Jul; 71(1):188-200. PubMed ID: 1318795
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Endothelium-dependent circulatory control--a mechanism for the differing peripheral vascular effects of isoflurane versus halothane.
    Greenblatt EP; Loeb AL; Longnecker DE
    Anesthesiology; 1992 Dec; 77(6):1178-85. PubMed ID: 1466468
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of renal interstitial hydrostatic pressure in natriuresis of systemic nitric oxide inhibition.
    Haas JA; Khraibi AA; Perrella MA; Knox FG
    Am J Physiol; 1993 Mar; 264(3 Pt 2):F411-4. PubMed ID: 8456954
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of an inhibitor of nitric oxide synthase in human-hand veins.
    Bedarida GV; Kim D; Blaschke TF; Hoffman BB
    Horm Metab Res; 1994 Feb; 26(2):109-12. PubMed ID: 7515369
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Arginine feeding modifies cyclosporine nephrotoxicity in rats.
    De Nicola L; Thomson SC; Wead LM; Brown MR; Gabbai FB
    J Clin Invest; 1993 Oct; 92(4):1859-65. PubMed ID: 8408638
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inhibition of endothelium-derived relaxing factor enhances endothelin-mediated vasoconstriction.
    Lerman A; Sandok EK; Hildebrand FL; Burnett JC
    Circulation; 1992 May; 85(5):1894-8. PubMed ID: 1572045
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Studies on the glomerular microcirculatory actions of manidipine and its modulation of the systemic and renal effects of endothelin.
    Takahashi K; Katoh T; Fukunaga M; Badr KF
    Am Heart J; 1993 Feb; 125(2 Pt 2):609-19. PubMed ID: 8430606
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Endothelium-derived relaxing factor inhibits hypoxic pulmonary vasoconstriction in rats.
    Liu SF; Crawley DE; Barnes PJ; Evans TW
    Am Rev Respir Dis; 1991 Jan; 143(1):32-7. PubMed ID: 1986681
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interaction of non-arginine compounds with the endothelium-derived relaxing factor inhibitor, NG-monomethyl L-arginine.
    Thomas G; Ramwell PW
    J Pharmacol Exp Ther; 1992 Feb; 260(2):676-9. PubMed ID: 1310739
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of nitric oxide in the autoregulation of renal blood flow and glomerular filtration rate in aging spontaneously hypertensive rats.
    Kvam FI; Ofstad J; Iversen BM
    Kidney Blood Press Res; 2000; 23(6):376-84. PubMed ID: 11070417
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nitric oxide mediates vasoactive effects of endothelin-3 on rat mesenteric microvascular beds in vivo.
    Kurose I; Fukumura D; Miura S; Sekizuka E; Nagata H; Suematsu M; Tsuchiya M
    Angiology; 1993 Jun; 44(6):483-90. PubMed ID: 8503515
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Consequences of acute nitric oxide synthesis inhibition in experimental glomerulonephritis.
    Ferrario R; Takahashi K; Fogo A; Badr KF; Munger KA
    J Am Soc Nephrol; 1994 May; 4(11):1847-54. PubMed ID: 7919133
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Endothelium-derived relaxing factor in pulmonary and renal circulations during hypoxia.
    Perrella MA; Edell ES; Krowka MJ; Cortese DA; Burnett JC
    Am J Physiol; 1992 Jul; 263(1 Pt 2):R45-50. PubMed ID: 1636793
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.