These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 18776610)

  • 1. Assessment of the groundwater salinity monitoring network of the Tehran region: application of the discrete entropy theory.
    Masoumi F; Kerachian R
    Water Sci Technol; 2008; 58(4):765-71. PubMed ID: 18776610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimal redesign of groundwater quality monitoring networks: a case study.
    Masoumi F; Kerachian R
    Environ Monit Assess; 2010 Feb; 161(1-4):247-57. PubMed ID: 19199064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Locating monitoring wells in groundwater systems using embedded optimization and simulation models.
    Bashi-Azghadi SN; Kerachian R
    Sci Total Environ; 2010 Apr; 408(10):2189-98. PubMed ID: 20189633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of on-line river water quality monitoring systems using the entropy theory: a case study.
    Karamouz M; Nokhandan AK; Kerachian R; Maksimovic C
    Environ Monit Assess; 2009 Aug; 155(1-4):63-81. PubMed ID: 18663591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrochemical changes over time in the Zahedan Aquifer, Iran.
    Khazaei E; Stednick JD; Sanford WE; Warner JW
    Environ Monit Assess; 2006 Mar; 114(1-3):123-43. PubMed ID: 16570224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial-temporal assessment and redesign of groundwater quality monitoring network: a case study.
    Owlia RR; Abrishamchi A; Tajrishy M
    Environ Monit Assess; 2011 Jan; 172(1-4):263-73. PubMed ID: 20180017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redesigning and monitoring groundwater quality and quantity networks by using the entropy theory.
    Nazeri Tahroudi M; Khashei Siuki A; Ramezani Y
    Environ Monit Assess; 2019 Mar; 191(4):250. PubMed ID: 30919110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fuzzy-stochastic characterization of site uncertainty and variability in groundwater flow and contaminant transport through a heterogeneous aquifer.
    Zhang K; Li H; Achari G
    J Contam Hydrol; 2009 Apr; 106(1-2):73-82. PubMed ID: 19217686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biased monitoring of fresh water-salt water mixing zone in coastal aquifers.
    Shalev E; Lazar A; Wollman S; Kington S; Yechieli Y; Gvirtzman H
    Ground Water; 2009; 47(1):49-56. PubMed ID: 18823401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating ground water-sea water interactions via resistivity and seepage meters.
    Taniguchi M; Ishitobi T; Burnett WC; Wattayakorn G
    Ground Water; 2007; 45(6):729-35. PubMed ID: 17973751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preliminary observation of complex salt-fresh water mixing in a beach aquifer.
    Thorn P; Urish D
    Ground Water; 2013; 51(1):145-50. PubMed ID: 22578012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of the December 2004 tsunami on soil, groundwater and vegetation in the Nagapattinam District, India.
    Kume T; Umetsu C; Palanisami K
    J Environ Manage; 2009 Jul; 90(10):3147-54. PubMed ID: 19540650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping of spatial multi-scale sources of arsenic variation in groundwater on ChiaNan floodplain of Taiwan.
    Lin YB; Lin YP; Liu CW; Tan YC
    Sci Total Environ; 2006 Oct; 370(1):168-81. PubMed ID: 16904165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of artificial cutoff on a monitoring system and the water quality of the Keelung River.
    Lo SL; Kuo JT; Wang SM
    Water Sci Technol; 2002; 46(11-12):231-6. PubMed ID: 12523759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A GIS-based DRASTIC model for assessing aquifer vulnerability in Kakamigahara Heights, Gifu Prefecture, central Japan.
    Babiker IS; Mohamed MA; Hiyama T; Kato K
    Sci Total Environ; 2005 Jun; 345(1-3):127-40. PubMed ID: 15919534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of principal component analysis to profile temporal and spatial variations of chlorinated solvent concentration in groundwater.
    Lucas L; Jauzein M
    Environ Pollut; 2008 Jan; 151(1):205-12. PubMed ID: 17540487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A simple method for locating the fresh water-salt water interface using pressure data.
    Kim KY; Chon CM; Park KH
    Ground Water; 2007; 45(6):723-8. PubMed ID: 17973750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of threshold value in the use of statistical methods for groundwater vulnerability assessment.
    Masetti M; Sterlacchini S; Ballabio C; Sorichetta A; Poli S
    Sci Total Environ; 2009 Jun; 407(12):3836-46. PubMed ID: 19345985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of water quality monitoring network in a large river by combining measurements, a numerical model and matter-element analyses.
    Chen Q; Wu W; Blanckaert K; Ma J; Huang G
    J Environ Manage; 2012 Nov; 110():116-24. PubMed ID: 22776756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A direct passive method for measuring water and contaminant fluxes in porous media.
    Hatfield K; Annable M; Cho J; Rao PS; Klammler H
    J Contam Hydrol; 2004 Dec; 75(3-4):155-81. PubMed ID: 15610899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.