BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 18776621)

  • 1. Comparative study of exoelectrogenic utilization preferences and hydrogen conversion among major fermentation products in microbial electrolysis cells.
    Choi Y; Kim D; Choi H; Cha J; Baek G; Lee C
    Bioresour Technol; 2024 Feb; 393():130032. PubMed ID: 38013038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing proton transport in polyvinylidenedifluoride membranes and reducing biofouling for improved hydrogen production in microbial electrolysis cells.
    Zhao N; Meng S; Li X; Liu H; Liang D
    Bioresour Technol; 2024 Jun; 402():130842. PubMed ID: 38750828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overcoming hydrogen loss in single-chamber microbial electrolysis cells by urine amendment.
    Wang B; Liu Y; Wang X; Sun P
    Water Res; 2023 Dec; 247():120755. PubMed ID: 37918197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent Advances and Challenges in Anion Exchange Membranes Development/Application for Water Electrolysis: A Review.
    Liu L; Ma H; Khan M; Hsiao BS
    Membranes (Basel); 2024 Apr; 14(4):. PubMed ID: 38668113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance and community structure dynamics of microbial electrolysis cells operated on multiple complex feedstocks.
    Satinover SJ; Rodriguez M; Campa MF; Hazen TC; Borole AP
    Biotechnol Biofuels; 2020; 13():169. PubMed ID: 33062055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Twisted Poly(
    Zhang S; Ma W; Tian L; Kong D; Zhu Q; Wang F; Zhu H
    ACS Appl Mater Interfaces; 2024 Feb; 16(6):7660-7669. PubMed ID: 38295432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive impedance investigation of low-cost anion exchange membrane electrolysis for large-scale hydrogen production.
    Vincent I; Lee EC; Kim HM
    Sci Rep; 2021 Jan; 11(1):293. PubMed ID: 33432103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen production in microbial electrolysis cells with biocathodes.
    Noori MT; Rossi R; Logan BE; Min B
    Trends Biotechnol; 2024 Feb; ():. PubMed ID: 38360421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Structurally Different Tertiary Amines on the Properties of Quaternized Anionic Exchange Membranes Potentially Applicable for Water Electrolysis.
    Roggi A; Agonigi G; Resta C; Filpi A; Martinelli E; Guazzelli E
    Macromol Rapid Commun; 2024 May; 45(10):e2400027. PubMed ID: 38413001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulating Cation and Water Transports for Enhanced CO Electrolysis via Ionomer Coating.
    Adnan MA; Nabil SK; Kannimuthu K; Kibria MG
    ChemSusChem; 2024 Feb; 17(4):e202301425. PubMed ID: 37922209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anion-exchange membranes with internal microchannels for water control in CO
    Petrov KV; Bui JC; Baumgartner L; Weng LC; Dischinger SM; Larson DM; Miller DJ; Weber AZ; Vermaas DA
    Sustain Energy Fuels; 2022 Nov; 6(22):5077-5088. PubMed ID: 36389085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrogen Fixation and Ammonium Assimilation Pathway Expression of Geobacter sulfurreducens Changes in Response to the Anode Potential in Microbial Electrochemical Cells.
    Ortiz-Medina JF; Poole MR; Grunden AM; Call DF
    Appl Environ Microbiol; 2023 Apr; 89(4):e0207322. PubMed ID: 36975810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High catalytic activity and pollutants resistivity using Fe-AAPyr cathode catalyst for microbial fuel cell application.
    Santoro C; Serov A; Narvaez Villarrubia CW; Stariha S; Babanova S; Artyushkova K; Schuler AJ; Atanassov P
    Sci Rep; 2015 Nov; 5():16596. PubMed ID: 26563922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of catalysts and membranes for high yield biohydrogen production via electrohydrogenesis in microbial electrolysis cells (MECs).
    Cheng S; Logan BE
    Water Sci Technol; 2008; 58(4):853-7. PubMed ID: 18776621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of low-cost cathode catalysts for high yield biohydrogen production in microbial electrolysis cell.
    Wang L; Chen Y; Ye Y; Lu B; Zhu S; Shen S
    Water Sci Technol; 2011; 63(3):440-8. PubMed ID: 21278465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of catalysts and membranes for high yield biohydrogen production via electrohydrogenesis in microbial electrolysis cells (MECs).
    Cheng S; Logan BE
    Water Sci Technol; 2009; 59(10):2081. PubMed ID: 19474504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogen production from proteins via electrohydrogenesis in microbial electrolysis cells.
    Lu L; Xing D; Xie T; Ren N; Logan BE
    Biosens Bioelectron; 2010 Aug; 25(12):2690-5. PubMed ID: 20537524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial electrohydrogenesis linked to dark fermentation as integrated application for enhanced biohydrogen production: A review on process characteristics, experiences and lessons.
    Bakonyi P; Kumar G; Koók L; Tóth G; Rózsenberszki T; Bélafi-Bakó K; Nemestóthy N
    Bioresour Technol; 2018 Mar; 251():381-389. PubMed ID: 29295757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Platinum Group Metal-free Catalysts for Hydrogen Evolution Reaction in Microbial Electrolysis Cells.
    Yuan H; He Z
    Chem Rec; 2017 Jul; 17(7):641-652. PubMed ID: 28375578
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.