These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 18776673)
21. Substrate complexation and aggregation influence the cyclodextrin glycosyltransferase (CGTase) catalyzed synthesis of alkyl glycosides. Zehentgruber D; Lundemo P; Svensson D; Adlercreutz P J Biotechnol; 2011 Sep; 155(2):232-5. PubMed ID: 21723346 [TBL] [Abstract][Full Text] [Related]
22. Engineering of cellobiose phosphorylase for glycoside synthesis. de Groeve MR; Desmet T; Soetaert W J Biotechnol; 2011 Dec; 156(4):253-60. PubMed ID: 21803082 [TBL] [Abstract][Full Text] [Related]
23. Novel transglucosylating reaction of sucrose phosphorylase to carboxylic compounds such as benzoic acid. Sugimoto K; Nomura K; Nishiura H; Ohdan K; Ohdan K; Hayashi H; Kuriki T J Biosci Bioeng; 2007 Jul; 104(1):22-9. PubMed ID: 17697979 [TBL] [Abstract][Full Text] [Related]
24. Enzymatic synthesis of L-DOPA alpha-glycosides by reaction with sucrose catalyzed by four different glucansucrases from four strains of Leuconostoc mesenteroides. Yoon SH; Fulton DB; Robyt JF Carbohydr Res; 2010 Aug; 345(12):1730-5. PubMed ID: 20579635 [TBL] [Abstract][Full Text] [Related]
25. C-terminus loop 13 of Na+ glucose cotransporter SGLT1 contains a binding site for alkyl glucosides. Raja MM; Kipp H; Kinne RK Biochemistry; 2004 Aug; 43(34):10944-51. PubMed ID: 15323554 [TBL] [Abstract][Full Text] [Related]
26. Enzymatic synthesis of alpha-anomer-selective D-glucosides using maltose phosphorylase. Kino K; Shimizu Y; Kuratsu S; Kirimura K Biosci Biotechnol Biochem; 2007 Jun; 71(6):1598-600. PubMed ID: 17587700 [TBL] [Abstract][Full Text] [Related]
27. Simple preparations of alkyl and cycloalkyl alpha-glycosides of maltose, cellobiose, and lactose. Koto S; Hirooka M; Tashiro T; Sakashita M; Hatachi M; Kono T; Shimizu M; Yoshida N; Kurasawa S; Sakuma N; Sawazaki S; Takeuchi A; Shoya N; Nakamura E Carbohydr Res; 2004 Oct; 339(14):2415-24. PubMed ID: 15388356 [TBL] [Abstract][Full Text] [Related]
28. Production of flavonoid o-glucoside using sucrose synthase and flavonoid o-glucosyltransferase fusion protein. Son MH; Kim BG; Kim DH; Jin M; Kim K; Ahn JH J Microbiol Biotechnol; 2009 Jul; 19(7):709-12. PubMed ID: 19652519 [TBL] [Abstract][Full Text] [Related]
29. Walking a Fine Line with Sucrose Phosphorylase: Efficient Single-Step Biocatalytic Production of l-Ascorbic Acid 2-Glucoside from Sucrose. Gudiminchi RK; Nidetzky B Chembiochem; 2017 Jul; 18(14):1387-1390. PubMed ID: 28426168 [TBL] [Abstract][Full Text] [Related]
30. Inorganic phosphate self-sufficient whole-cell biocatalysts containing two co-expressed phosphorylases facilitate cellobiose production. Wang L; Zheng P; Hu M; Tao Y J Ind Microbiol Biotechnol; 2022 May; 49(3):. PubMed ID: 35289917 [TBL] [Abstract][Full Text] [Related]
31. Synthesis of 2-deoxy-2-c-alkyl glycal and glycopyranosides from 2-hydroxy glycal ester. Daskhan GC; Jayaraman N J Org Chem; 2012 Mar; 77(5):2185-91. PubMed ID: 22283453 [TBL] [Abstract][Full Text] [Related]
32. Synthesis of an ether-linked alkyl 5a-carba-beta-D-glucoside, a 5a-carba-beta-D-galactoside, a 2-acetamido-2-deoxy-5a-carba-beta-D-glucoside, and an alkyl 5a'-carba-beta-lactoside. Ogawa S; Aoyama H; Sato T Carbohydr Res; 2002 Nov; 337(21-23):1979-92. PubMed ID: 12433463 [TBL] [Abstract][Full Text] [Related]
33. Reaction on D-glucal by an inverting phosphorylase to synthesize derivatives of 2-deoxy-beta-D-arabino-hexopyranosyl-(1-->4)-D-glucose (2II-deoxycellobiose). Kitaoka M; Nomura S; Yoshida M; Hayashi K Carbohydr Res; 2006 Mar; 341(4):545-9. PubMed ID: 16430877 [TBL] [Abstract][Full Text] [Related]
34. Transglycosylation reaction of xylanase B from the hyperthermophilic Thermotoga maritima with the ability of synthesis of tertiary alkyl beta-D-xylobiosides and xylosides. Jiang Z; Zhu Y; Li L; Yu X; Kusakabe I; Kitaoka M; Hayashi K J Biotechnol; 2004 Oct; 114(1-2):125-34. PubMed ID: 15464606 [TBL] [Abstract][Full Text] [Related]
35. Transformation of cellulose into biodegradable alkyl glycosides by following two different chemical routes. Villandier N; Corma A ChemSusChem; 2011 Apr; 4(4):508-13. PubMed ID: 21391304 [TBL] [Abstract][Full Text] [Related]
36. Biosynthesis of radiolabeled cellodextrins by the Clostridium thermocellum cellobiose and cellodextrin phosphorylases for measurement of intracellular sugars. Zhang YH; Lynd LR Appl Microbiol Biotechnol; 2006 Mar; 70(1):123-9. PubMed ID: 16402169 [TBL] [Abstract][Full Text] [Related]
37. Synthesis of cellobiose from starch by the successive actions of two phosphorylases. Suzuki M; Kaneda K; Nakai Y; Kitaoka M; Taniguchi H N Biotechnol; 2009 Oct; 26(3-4):137-42. PubMed ID: 19631300 [TBL] [Abstract][Full Text] [Related]
38. The occurrence of a glucose-enzyme complex in the reaction catalyzed by sucrose phosphorylase. Voet J; Abeles RH J Biol Chem; 1966 Jun; 241(11):2731-2. PubMed ID: 5911644 [No Abstract] [Full Text] [Related]
39. Transglucosylation potential of six sucrose phosphorylases toward different classes of acceptors. Aerts D; Verhaeghe TF; Roman BI; Stevens CV; Desmet T; Soetaert W Carbohydr Res; 2011 Sep; 346(13):1860-7. PubMed ID: 21798524 [TBL] [Abstract][Full Text] [Related]
40. Kinetic properties and mechanism of action of an intracellular beta-glucosidase from Thermoascus aurantiacus Miehe. Bedino S; Testore G; Obert F Ital J Biochem; 1986; 35(4):207-20. PubMed ID: 3781804 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]