These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 18776932)

  • 1. Sampling for global epidemic models and the topology of an international airport network.
    Bobashev G; Morris RJ; Goedecke DM
    PLoS One; 2008 Sep; 3(9):e3154. PubMed ID: 18776932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temporal variations in international air travel: implications for modelling the spread of infectious diseases.
    Wardle J; Bhatia S; Cori A; Nouvellet P
    J Travel Med; 2024 Jun; 31(4):. PubMed ID: 38630887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transmission and control of an emerging influenza pandemic in a small-world airline network.
    Hsu CI; Shih HH
    Accid Anal Prev; 2010 Jan; 42(1):93-100. PubMed ID: 19887149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frequent travelers and rate of spread of epidemics.
    Hollingsworth TD; Ferguson NM; Anderson RM
    Emerg Infect Dis; 2007 Sep; 13(9):1288-94. PubMed ID: 18252097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Public health measures at the airport of Hamburg during the early phase of pandemic influenza (H1N1) 2009].
    Schlaich C; Sevenich C; Gau B
    Gesundheitswesen; 2012 Mar; 74(3):145-53. PubMed ID: 21305451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing the impact of airline travel on the geographic spread of pandemic influenza.
    Grais RF; Ellis JH; Glass GE
    Eur J Epidemiol; 2003; 18(11):1065-72. PubMed ID: 14620941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the treatment of airline travelers in mathematical models.
    Johansson MA; Arana-Vizcarrondo N; Biggerstaff BJ; Staples JE; Gallagher N; Marano N
    PLoS One; 2011; 6(7):e22151. PubMed ID: 21799782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring the potential of individual airports for pandemic spread over the world airline network.
    Lawyer G
    BMC Infect Dis; 2016 Feb; 16():70. PubMed ID: 26861206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The use and reporting of airline passenger data for infectious disease modelling: a systematic review.
    Meslé MMI; Hall IM; Christley RM; Leach S; Read JM
    Euro Surveill; 2019 Aug; 24(31):. PubMed ID: 31387671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Air Travel and TB: an airline perspective.
    Dowdall NP; Evans AD; Thibeault C
    Travel Med Infect Dis; 2010 Mar; 8(2):96-103. PubMed ID: 20478517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The roles of transportation and transportation hubs in the propagation of influenza and coronaviruses: a systematic review.
    Browne A; Ahmad SS; Beck CR; Nguyen-Van-Tam JS
    J Travel Med; 2016 Jan; 23(1):. PubMed ID: 26782122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding the impact of network structure on air travel pattern at different scales.
    Huynh HN; Ng KL; Toh R; Feng L
    PLoS One; 2024; 19(3):e0299897. PubMed ID: 38457398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Commuter mobility and the spread of infectious diseases: application to influenza in France.
    Charaudeau S; Pakdaman K; Boëlle PY
    PLoS One; 2014; 9(1):e83002. PubMed ID: 24416152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Empirical evidence for the effect of airline travel on inter-regional influenza spread in the United States.
    Brownstein JS; Wolfe CJ; Mandl KD
    PLoS Med; 2006 Sep; 3(10):e401. PubMed ID: 16968115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Screening for infectious diseases at international airports: the Frankfurt model.
    Gaber W; Goetsch U; Diel R; Doerr HW; Gottschalk R
    Aviat Space Environ Med; 2009 Jul; 80(7):595-600. PubMed ID: 19601499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Climatic similarity and biological exchange in the worldwide airline transportation network.
    Tatem AJ; Hay SI
    Proc Biol Sci; 2007 Jun; 274(1617):1489-96. PubMed ID: 17426013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Respiratory infections during air travel.
    Leder K; Newman D
    Intern Med J; 2005 Jan; 35(1):50-5. PubMed ID: 15667469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling airport congestion contagion by heterogeneous SIS epidemic spreading on airline networks.
    Ceria A; Köstler K; Gobardhan R; Wang H
    PLoS One; 2021; 16(1):e0245043. PubMed ID: 33481799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predictability and epidemic pathways in global outbreaks of infectious diseases: the SARS case study.
    Colizza V; Barrat A; Barthélemy M; Vespignani A
    BMC Med; 2007 Nov; 5():34. PubMed ID: 18031574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Critical paths in a metapopulation model of H1N1: Efficiently delaying influenza spreading through flight cancellation.
    Marcelino J; Kaiser M
    PLoS Curr; 2012 Apr; 4():e4f8c9a2e1fca8. PubMed ID: 22919563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.