These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 18777045)

  • 21. Rheology of starch dispersions at high temperatures.
    Ahuja A; Lee R; Latshaw A; Foster P
    J Texture Stud; 2020 Aug; 51(4):575-584. PubMed ID: 32086941
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Unusual polysaccharide rheology of aqueous dispersions of soft phytoglycogen nanoparticles.
    Shamana H; Grossutti M; Papp-Szabo E; Miki C; Dutcher JR
    Soft Matter; 2018 Aug; 14(31):6496-6505. PubMed ID: 30043804
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Schematic models for dynamic yielding of sheared colloidal glasses.
    Fuchs M; Cates ME
    Faraday Discuss; 2003; 123():267-86; discussion 303-22, 419-21. PubMed ID: 12638866
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Scaling of Shear Rheology of Concentrated Charged Colloidal Suspensions across Glass Transition.
    Wu B; Iwashita T; Chen WR
    J Phys Chem B; 2022 Feb; 126(4):922-927. PubMed ID: 35057619
    [TBL] [Abstract][Full Text] [Related]  

  • 25. From Subaging to Hyperaging in Structural Glasses.
    Elizondo-Aguilera LF; Rizzo T; Voigtmann T
    Phys Rev Lett; 2022 Dec; 129(23):238003. PubMed ID: 36563193
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Yield stresses and flow curves in metallic glass formers and granular systems.
    Voigtmann T
    Eur Phys J E Soft Matter; 2011 Sep; 34(9):106. PubMed ID: 21959546
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thermosensitive core-shell particles as model systems for studying the flow behavior of concentrated colloidal dispersions.
    Crassous JJ; Siebenbürger M; Ballauff M; Drechsler M; Henrich O; Fuchs M
    J Chem Phys; 2006 Nov; 125(20):204906. PubMed ID: 17144739
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On the Bauschinger effect in supercooled melts under shear: results from mode coupling theory and molecular dynamics simulations.
    Frahsa F; Bhattacharjee AK; Horbach J; Fuchs M; Voigtmann T
    J Chem Phys; 2013 Mar; 138(12):12A513. PubMed ID: 23556764
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hard discs under steady shear: comparison of Brownian dynamics simulations and mode coupling theory.
    Henrich O; Weysser F; Cates ME; Fuchs M
    Philos Trans A Math Phys Eng Sci; 2009 Dec; 367(1909):5033-50. PubMed ID: 19933126
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Shear thickening and scaling of the elastic modulus in a fractal colloidal system with attractive interactions.
    Osuji CO; Kim C; Weitz DA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 1):060402. PubMed ID: 18643204
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Steady shear flow properties of Cordia myxa leaf gum as a function of concentration and temperature.
    Chaharlang M; Samavati V
    Int J Biol Macromol; 2015 Aug; 79():56-62. PubMed ID: 25936501
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Glassy dynamics and mechanical response in dense fluids of soft repulsive spheres. II. Shear modulus, relaxation-elasticity connections, and rheology.
    Yang J; Schweizer KS
    J Chem Phys; 2011 May; 134(20):204909. PubMed ID: 21639479
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Supercooled liquids under shear: theory and simulation.
    Miyazaki K; Reichman DR; Yamamoto R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jul; 70(1 Pt 1):011501. PubMed ID: 15324050
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural relaxation and rheological response of a driven amorphous system.
    Varnik F
    J Chem Phys; 2006 Oct; 125(16):164514. PubMed ID: 17092112
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Glass-transition asymptotics in two theories of glassy dynamics: Self-consistent generalized Langevin equation and mode-coupling theory.
    Elizondo-Aguilera LF; Voigtmann T
    Phys Rev E; 2019 Oct; 100(4-1):042601. PubMed ID: 31770981
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation of the Behavioral Characteristics in a Gas and Heavy Oil Stratified Flow According to the Herschel-Bulkley Fluid Model.
    Hou LT; Liu S; Zhang J; Xu JY
    ACS Omega; 2020 Jul; 5(28):17787-17800. PubMed ID: 32715265
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of collective elasticity on activated structural relaxation, yielding, and steady state flow in hard sphere fluids and colloidal suspensions under strong deformation.
    Ghosh A; Schweizer KS
    J Chem Phys; 2020 Nov; 153(19):194502. PubMed ID: 33218226
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Use of Close-Packed Vesicular Dispersions to Stabilize Colloidal Particle Dispersions against Sedimentation.
    Yang YJ; Corti DS; Franses EI
    Langmuir; 2015 Aug; 31(32):8802-8. PubMed ID: 26203879
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Shear-induced breaking of cages in colloidal glasses: Scattering experiments and mode coupling theory.
    Amann CP; Denisov D; Dang MT; Struth B; Schall P; Fuchs M
    J Chem Phys; 2015 Jul; 143(3):034505. PubMed ID: 26203034
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Critical yielding rheology: from externally deformed glasses to active systems.
    Villarroel C; Düring G
    Soft Matter; 2021 Nov; 17(43):9944-9949. PubMed ID: 34693958
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.