BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

373 related articles for article (PubMed ID: 18777550)

  • 1. Navigator-triggered prospective acquisition correction (PACE) technique vs. conventional respiratory-triggered technique for free-breathing 3D MRCP: an initial prospective comparative study using healthy volunteers.
    Morita S; Ueno E; Suzuki K; Machida H; Fujimura M; Kojima S; Hirata M; Ohnishi T; Imura C
    J Magn Reson Imaging; 2008 Sep; 28(3):673-7. PubMed ID: 18777550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Respiratory-triggered MRCP applying parallel acquisition techniques.
    Asbach P; Dewey M; Klessen C; Stemmer A; Ockenga J; Huppertz A; Sander B; Hamm B; Taupitz M
    J Magn Reson Imaging; 2006 Nov; 24(5):1095-100. PubMed ID: 17024665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Usefulness of the navigator-echo triggering technique for free-breathing three-dimensional magnetic resonance cholangiopancreatography.
    Matsunaga K; Ogasawara G; Tsukano M; Iwadate Y; Inoue Y
    Magn Reson Imaging; 2013 Apr; 31(3):396-400. PubMed ID: 23102944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biliary anatomy on 3D MRCP: Comparison of volume-rendering and maximum-intensity-projection algorithms.
    Morita S; Saito N; Suzuki K; Mitsuhashi N
    J Magn Reson Imaging; 2009 Mar; 29(3):601-6. PubMed ID: 19243055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prospective trial of a navigator setting under left hepatic lobe on magnetic resonance cholangiopancreatography using a free-breathing prospective acquisition correction technique.
    Morita S; Suzuki K; Machida H; Fujimura M; Ueno E; Ohnishi T; Imura C
    Magn Reson Imaging; 2008 Jul; 26(6):841-6. PubMed ID: 18448301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clinical impact of 3-dimensional balanced turbo-field-echo magnetic resonance cholangiopancreatography at 3 T: prospective intraindividual comparison with 3-dimensional turbo-spin-echo magnetic resonance cholangiopancreatography.
    Itatani R; Namimoto T; Takaoka H; Katahira K; Noda S; Toyonari N; Yamashita Y
    J Comput Assist Tomogr; 2015; 39(1):19-24. PubMed ID: 25299796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MR cholangiopancreatography at 3.0 T: intraindividual comparative study with MR cholangiopancreatography at 1.5 T for clinical patients.
    Onishi H; Kim T; Hori M; Murakami T; Tatsumi M; Nakaya Y; Nakamoto A; Osuga K; Tomoda K; Nakamura H
    Invest Radiol; 2009 Sep; 44(9):559-65. PubMed ID: 19692840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-resolved 3D pulmonary perfusion MRI: comparison of different k-space acquisition strategies at 1.5 and 3 T.
    Attenberger UI; Ingrisch M; Dietrich O; Herrmann K; Nikolaou K; Reiser MF; Schönberg SO; Fink C
    Invest Radiol; 2009 Sep; 44(9):525-31. PubMed ID: 19652608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clinical usefulness of free-breathing navigator-triggered 3D MRCP in non-cooperative patients: comparison with conventional breath-hold 2D MRCP.
    Kim JH; Hong SS; Eun HW; Han JK; Choi BI
    Eur J Radiol; 2012 Apr; 81(4):e513-8. PubMed ID: 21700409
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic resonance cholangiopancreatography using a free-breathing T2-weighted turbo spin-echo sequence with navigator-triggered prospective acquisition correction.
    Asbach P; Klessen C; Kroencke TJ; Kluner C; Stemmer A; Hamm B; Taupitz M
    Magn Reson Imaging; 2005 Nov; 23(9):939-45. PubMed ID: 16310109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison and reproducibility of ADC measurements in breathhold, respiratory triggered, and free-breathing diffusion-weighted MR imaging of the liver.
    Kwee TC; Takahara T; Koh DM; Nievelstein RA; Luijten PR
    J Magn Reson Imaging; 2008 Nov; 28(5):1141-8. PubMed ID: 18972355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Another dimension in magnetic resonance cholangiopancreatography: comparison of 2- and 3-dimensional magnetic resonance cholangiopancreatography for the evaluation of intraductal papillary mucinous neoplasm of the pancreas.
    Yoon LS; Catalano OA; Fritz S; Ferrone CR; Hahn PF; Sahani DV
    J Comput Assist Tomogr; 2009; 33(3):363-8. PubMed ID: 19478628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noncontrast-enhanced three-dimensional magnetic resonance aortography of the thorax at 3.0 T using respiratory-compensated T1-weighted k-space segmented gradient-echo imaging with radial data sampling: preliminary study.
    Amano Y; Takahama K; Kumita S
    Invest Radiol; 2009 Sep; 44(9):548-52. PubMed ID: 19652612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. T2-weighted MRI of the upper abdomen: comparison of four fat-suppressed T2-weighted sequences including PROPELLER (BLADE) technique.
    Bayramoglu S; Kilickesmez O; Cimilli T; Kayhan A; Yirik G; Islim F; Alibek S
    Acad Radiol; 2010 Mar; 17(3):368-74. PubMed ID: 20042352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Usefulness of the SPACE pulse sequence at 1.5T MR cholangiography: comparison of image quality and image acquisition time with conventional 3D-TSE sequence.
    Nakaura T; Kidoh M; Maruyama N; Kawahara T; Namimoto T; Sakai Y; Harada K; Yamashita Y
    J Magn Reson Imaging; 2013 Nov; 38(5):1014-9. PubMed ID: 24105679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High spatial resolution 3D MR cholangiography with high sampling efficiency technique (SPACE): comparison of 3T vs. 1.5T.
    Arizono S; Isoda H; Maetani YS; Hirokawa Y; Shimada K; Nakamoto Y; Shibata T; Togashi K
    Eur J Radiol; 2010 Jan; 73(1):114-8. PubMed ID: 18834686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MRCP imaging at 3.0 T vs. 1.5 T: preliminary experience in healthy volunteers.
    Isoda H; Kataoka M; Maetani Y; Kido A; Umeoka S; Tamai K; Koyama T; Nakamoto Y; Miki Y; Saga T; Togashi K
    J Magn Reson Imaging; 2007 May; 25(5):1000-6. PubMed ID: 17410562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic resonance imaging of the upper abdomen using a free-breathing T2-weighted turbo spin echo sequence with navigator triggered prospective acquisition correction.
    Klessen C; Asbach P; Kroencke TJ; Fischer T; Warmuth C; Stemmer A; Hamm B; Taupitz M
    J Magn Reson Imaging; 2005 May; 21(5):576-82. PubMed ID: 15834908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional imaging of pulmonary veins by a novel steady-state free-precession magnetic resonance angiography technique without the use of intravenous contrast agent: initial experience.
    Krishnam MS; Tomasian A; Malik S; Singhal A; Sassani A; Laub G; Finn JP; Ruehm S
    Invest Radiol; 2009 Aug; 44(8):447-53. PubMed ID: 19561516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional cerebral contrast-enhanced magnetic resonance venography at 3.0 Tesla: initial results using highly accelerated parallel acquisition.
    Nael K; Fenchel M; Salamon N; Duckwiler GR; Laub G; Finn JP; Villablanca JP
    Invest Radiol; 2006 Oct; 41(10):763-8. PubMed ID: 16971800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.