These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 18777566)

  • 1. Experience-dependent refinement of the inhibitory axons projecting to the medial superior olive.
    Werthat F; Alexandrova O; Grothe B; Koch U
    Dev Neurobiol; 2008 Nov; 68(13):1454-62. PubMed ID: 18777566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early appearance of inhibitory input to the MNTB supports binaural processing during development.
    Green JS; Sanes DH
    J Neurophysiol; 2005 Dec; 94(6):3826-35. PubMed ID: 16120660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of sound localization mechanisms in the mongolian gerbil is shaped by early acoustic experience.
    Seidl AH; Grothe B
    J Neurophysiol; 2005 Aug; 94(2):1028-36. PubMed ID: 15829592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative posthearing development of inhibitory inputs to the lateral superior olive in gerbils and mice.
    Walcher J; Hassfurth B; Grothe B; Koch U
    J Neurophysiol; 2011 Sep; 106(3):1443-53. PubMed ID: 21697449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional glutamatergic and glycinergic inputs to several superior olivary nuclei of the rat revealed by optical imaging.
    Srinivasan G; Friauf E; Löhrke S
    Neuroscience; 2004; 128(3):617-34. PubMed ID: 15381290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transient appearance of calbindin-D28k-positive neurons in the superior olivary complex of developing rats.
    Friauf E
    J Comp Neurol; 1993 Aug; 334(1):59-74. PubMed ID: 8408759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantification of the three-dimensional morphology of coincidence detector neurons in the medial superior olive of gerbils during late postnatal development.
    Rautenberg PL; Grothe B; Felmy F
    J Comp Neurol; 2009 Nov; 517(3):385-96. PubMed ID: 19760600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maturation of glycinergic inhibition in the gerbil medial superior olive after hearing onset.
    Magnusson AK; Kapfer C; Grothe B; Koch U
    J Physiol; 2005 Oct; 568(Pt 2):497-512. PubMed ID: 16096336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activity-Dependent Calcium Signaling in Neurons of the Medial Superior Olive during Late Postnatal Development.
    Franzen DL; Gleiss SA; Kellner CJ; Kladisios N; Felmy F
    J Neurosci; 2020 Feb; 40(8):1689-1700. PubMed ID: 31949105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glycine-mediated changes of onset reliability at a mammalian central synapse.
    Kopp-Scheinpflug C; Dehmel S; Tolnai S; Dietz B; Milenkovic I; Rübsamen R
    Neuroscience; 2008 Nov; 157(2):432-45. PubMed ID: 18840508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gain adjustment of inhibitory synapses in the auditory system.
    Kotak VC; Sanes DH
    Biol Cybern; 2003 Nov; 89(5):363-70. PubMed ID: 14669016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of ITD coding within the initial stages of the auditory pathway.
    Pecka M; Siveke I; Grothe B; Lesica NA
    J Neurophysiol; 2010 Jan; 103(1):38-46. PubMed ID: 19846624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experience-dependent refinement of inhibitory inputs to auditory coincidence-detector neurons.
    Kapfer C; Seidl AH; Schweizer H; Grothe B
    Nat Neurosci; 2002 Mar; 5(3):247-53. PubMed ID: 11850629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The relative contributions of MNTB and LNTB neurons to inhibition in the medial superior olive assessed through single and paired recordings.
    Roberts MT; Seeman SC; Golding NL
    Front Neural Circuits; 2014; 8():49. PubMed ID: 24860434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Precise inhibition is essential for microsecond interaural time difference coding.
    Brand A; Behrend O; Marquardt T; McAlpine D; Grothe B
    Nature; 2002 May; 417(6888):543-7. PubMed ID: 12037566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distribution of Glutamatergic and Glycinergic Inputs onto Human Auditory Coincidence Detector Neurons.
    Mansour Y; Kulesza R
    Neuroscience; 2021 Aug; 468():75-87. PubMed ID: 34126187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deafferentation induces novel axonal projections in the auditory brainstem after hearing onset.
    Hsieh CY; Cramer KS
    J Comp Neurol; 2006 Aug; 497(4):589-99. PubMed ID: 16739167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of inhibitory synaptic kinetics on the interaural time difference sensitivity in a linear model of binaural coincidence detection.
    Leibold C
    J Acoust Soc Am; 2010 Feb; 127(2):931-942. PubMed ID: 20136216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glycinergic and GABAergic calcium responses in the developing lateral superior olive.
    Kullmann PH; Ene FA; Kandler K
    Eur J Neurosci; 2002 Apr; 15(7):1093-104. PubMed ID: 11982621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organization of binaural excitatory and inhibitory inputs to the inferior colliculus from the superior olive.
    Loftus WC; Bishop DC; Saint Marie RL; Oliver DL
    J Comp Neurol; 2004 May; 472(3):330-44. PubMed ID: 15065128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.