These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

583 related articles for article (PubMed ID: 18777567)

  • 1. Skeletal indicators of locomotor adaptations in living and extinct rodents.
    Samuels JX; Van Valkenburgh B
    J Morphol; 2008 Nov; 269(11):1387-411. PubMed ID: 18777567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Postcranial morphology and the locomotor habits of living and extinct carnivorans.
    Samuels JX; Meachen JA; Sakai SA
    J Morphol; 2013 Feb; 274(2):121-46. PubMed ID: 22972188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Primate limb bones and locomotor types in arboreal or terrestrial environments.
    Kimura T
    Z Morphol Anthropol; 2002 Mar; 83(2-3):201-19. PubMed ID: 12050893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of primate, carnivoran and rodent limb bone cross-sectional properties: are primates really unique?
    Polk JD; Demes B; Jungers WL; Biknevicius AR; Heinrich RE; Runestad JA
    J Hum Evol; 2000 Sep; 39(3):297-325. PubMed ID: 10964531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Postcranial skeleton of Shinisaurus crocodilurus (Squamata: Anguimorpha).
    Conrad JL
    J Morphol; 2006 Jul; 267(7):759-75. PubMed ID: 15570597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intrinsic hand proportions of euarchontans and other mammals: implications for the locomotor behavior of plesiadapiforms.
    Kirk EC; Lemelin P; Hamrick MW; Boyer DM; Bloch JI
    J Hum Evol; 2008 Aug; 55(2):278-99. PubMed ID: 18440594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The cross-sectional geometry of the hand and foot bones of the hominoidea and its relationship to locomotor behavior.
    Marchi D
    J Hum Evol; 2005 Dec; 49(6):743-61. PubMed ID: 16219337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A three-dimensional analysis of the morphological evolution and locomotor behaviour of the carnivoran hind limb.
    Martín-Serra A; Figueirido B; Palmqvist P
    BMC Evol Biol; 2014 Jun; 14():129. PubMed ID: 24927753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Allometry of the limb long bones of insectivores and rodents.
    Bou J; Casinos A; Ocaña J
    J Morphol; 1987 May; 192(2):113-23. PubMed ID: 3599079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hindlimb adaptations in Ourayia and Chipetaia, relatively large-bodied omomyine primates from the Middle Eocene of Utah.
    Dunn RH; Sybalsky JM; Conroy GC; Rasmussen DT
    Am J Phys Anthropol; 2006 Nov; 131(3):303-10. PubMed ID: 16617428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Postnatal ontogeny of limb proportions and functional indices in the subterranean rodent Ctenomys talarum (Rodentia: Ctenomyidae).
    Echeverría AI; Becerra F; Vassallo AI
    J Morphol; 2014 Aug; 275(8):902-13. PubMed ID: 24643820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Skeletal differences in the appendicular skeleton of the lynx and the caracal (Felidae: Carnivora) in relation to ecology.
    Mandal AK; Talukder SK
    Anat Anz; 1975; 137(5):447-53. PubMed ID: 1180384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The skeleton of early Eocene Cantius, oldest lemuriform primate.
    Rose KD; Walker A
    Am J Phys Anthropol; 1985 Jan; 66(1):73-89. PubMed ID: 3976872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional trade-offs in the limb bones of dogs selected for running versus fighting.
    Kemp TJ; Bachus KN; Nairn JA; Carrier DR
    J Exp Biol; 2005 Sep; 208(Pt 18):3475-82. PubMed ID: 16155220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neandertal postcranial remains from the Sima de las Palomas del Cabezo Gordo, Murcia, southeastern Spain.
    Walker MJ; Ortega J; López MV; Parmová K; Trinkaus E
    Am J Phys Anthropol; 2011 Apr; 144(4):505-15. PubMed ID: 21404228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Forelimb indicators of prey-size preference in the Felidae.
    Meachen-Samuels J; Van Valkenburgh B
    J Morphol; 2009 Jun; 270(6):729-44. PubMed ID: 19123240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural adaptations for gliding in mammals with implications for locomotor behavior in paromomyids.
    Runestad JA; Ruff CB
    Am J Phys Anthropol; 1995 Oct; 98(2):101-19. PubMed ID: 8644873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Careful climbing in the Miocene: the forelimbs of Ardipithecus ramidus and humans are primitive.
    Lovejoy CO; Simpson SW; White TD; Asfaw B; Suwa G
    Science; 2009 Oct; 326(5949):70e1-8. PubMed ID: 19810196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional morphology of the postcranium and locomotor behavior of Neosaimiri fieldsi, a Saimiri-like Middle Miocene platyrrhine.
    Nakatsukasa M; Takai M; Setoguchi T
    Am J Phys Anthropol; 1997 Apr; 102(4):515-44. PubMed ID: 9140542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The anatomy of the world's largest extinct rodent.
    Sánchez-Villagra MR; Aguilera O; Horovitz I
    Science; 2003 Sep; 301(5640):1708-10. PubMed ID: 14500978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.