These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 18777582)
1. Protein adsorption resistance and oxygen permeability of chemically crosslinked phospholipid polymer hydrogel for ophthalmologic biomaterials. Goda T; Matsuno R; Konno T; Takai M; Ishihara K J Biomed Mater Res B Appl Biomater; 2009 Apr; 89(1):184-90. PubMed ID: 18777582 [TBL] [Abstract][Full Text] [Related]
2. Soft contact lens biomaterials from bioinspired phospholipid polymers. Goda T; Ishihara K Expert Rev Med Devices; 2006 Mar; 3(2):167-74. PubMed ID: 16515383 [TBL] [Abstract][Full Text] [Related]
3. Photoinduced graft polymerization of 2-methacryloyloxyethyl phosphorylcholine on silicone hydrogels for reducing protein adsorption. Wang JJ; Liu F J Mater Sci Mater Med; 2011 Dec; 22(12):2651-7. PubMed ID: 22020548 [TBL] [Abstract][Full Text] [Related]
4. Semi-interpenetrating polymer networks composed of biocompatible phospholipid polymer and segmented polyurethane. Iwasaki Y; Aiba Y; Morimoto N; Nakabayashi N; Ishihara K J Biomed Mater Res; 2000 Dec; 52(4):701-8. PubMed ID: 11033553 [TBL] [Abstract][Full Text] [Related]
5. Biocompatibility and drug release behavior of spontaneously formed phospholipid polymer hydrogels. Kimura M; Takai M; Ishihara K J Biomed Mater Res A; 2007 Jan; 80(1):45-54. PubMed ID: 16958047 [TBL] [Abstract][Full Text] [Related]
6. Copolymers of 2-methacryloyloxyethyl phosphorylcholine (MPC) as biomaterials. Nakabayashi N; Iwasaki Y Biomed Mater Eng; 2004; 14(4):345-54. PubMed ID: 15472384 [TBL] [Abstract][Full Text] [Related]
7. Reduced protein adsorption on novel phospholipid polymers. Ishihara K; Iwasaki Y J Biomater Appl; 1998 Oct; 13(2):111-27. PubMed ID: 9777463 [TBL] [Abstract][Full Text] [Related]
8. Spontaneously forming hydrogel from water-soluble random- and block-type phospholipid polymers. Kimura M; Fukumoto K; Watanabe J; Takai M; Ishihara K Biomaterials; 2005 Dec; 26(34):6853-62. PubMed ID: 15978662 [TBL] [Abstract][Full Text] [Related]
9. Biomimetic phosphorylcholine polymer grafting from polydimethylsiloxane surface using photo-induced polymerization. Goda T; Konno T; Takai M; Moro T; Ishihara K Biomaterials; 2006 Oct; 27(30):5151-60. PubMed ID: 16797692 [TBL] [Abstract][Full Text] [Related]
10. Synthesis of photoreactive phospholipid polymers for use in versatile surface modification of various materials to obtain extreme wettability. Fukazawa K; Ishihara K ACS Appl Mater Interfaces; 2013 Aug; 5(15):6832-6. PubMed ID: 23905848 [TBL] [Abstract][Full Text] [Related]
12. Hemocompatibility of human whole blood on polymers with a phospholipid polar group and its mechanism. Ishihara K; Oshida H; Endo Y; Ueda T; Watanabe A; Nakabayashi N J Biomed Mater Res; 1992 Dec; 26(12):1543-52. PubMed ID: 1484061 [TBL] [Abstract][Full Text] [Related]
13. Effects of molecular architecture of phospholipid polymers on surface modification of segmented polyurethanes. Liu Y; Inoue Y; Sakata S; Kakinoki S; Yamaoka T; Ishihara K J Biomater Sci Polym Ed; 2014; 25(5):474-86. PubMed ID: 24417469 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of In Vitro Wettability of Soft Contact Lenses Using Tear Supplements. Iwashita H; Itokawa T; Suzuki T; Okajima Y; Kakisu K; Hori Y Eye Contact Lens; 2021 May; 47(5):244-248. PubMed ID: 32443004 [TBL] [Abstract][Full Text] [Related]
15. Why do phospholipid polymers reduce protein adsorption? Ishihara K; Nomura H; Mihara T; Kurita K; Iwasaki Y; Nakabayashi N J Biomed Mater Res; 1998 Feb; 39(2):323-30. PubMed ID: 9457564 [TBL] [Abstract][Full Text] [Related]
16. Surface characterization of a silicone hydrogel contact lens having bioinspired 2-methacryloyloxyethyl phosphorylcholine polymer layer in hydrated state. Shi X; Cantu-Crouch D; Sharma V; Pruitt J; Yao G; Fukazawa K; Wu JY; Ishihara K Colloids Surf B Biointerfaces; 2021 Mar; 199():111539. PubMed ID: 33387797 [TBL] [Abstract][Full Text] [Related]
17. Rapid development of hydrophilicity and protein adsorption resistance by polymer surfaces bearing phosphorylcholine and naphthalene groups. Futamura K; Matsuno R; Konno T; Takai M; Ishihara K Langmuir; 2008 Sep; 24(18):10340-4. PubMed ID: 18698868 [TBL] [Abstract][Full Text] [Related]
18. Preparation and performance of protein-adsorption-resistant asymmetric porous membrane composed of polysulfone/phospholipid polymer blend. Hasegawa T; Iwasaki Y; Ishihara K Biomaterials; 2001 Feb; 22(3):243-51. PubMed ID: 11197499 [TBL] [Abstract][Full Text] [Related]
19. Super-hydrophilic silicone hydrogels with interpenetrating poly(2-methacryloyloxyethyl phosphorylcholine) networks. Shimizu T; Goda T; Minoura N; Takai M; Ishihara K Biomaterials; 2010 Apr; 31(12):3274-80. PubMed ID: 20117831 [TBL] [Abstract][Full Text] [Related]
20. Oxygen transmissibility of piggyback systems with conventional soft and silicone hydrogel contact lenses. López-Alemany A; González-Méijome JM; Almeida JB; Parafita MA; Refojo MF Cornea; 2006 Feb; 25(2):214-9. PubMed ID: 16371786 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]