These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 18778246)

  • 1. Glucose regulation of insulin gene expression in pancreatic beta-cells.
    Andrali SS; Sampley ML; Vanderford NL; Ozcan S
    Biochem J; 2008 Oct; 415(1):1-10. PubMed ID: 18778246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of MafA in pancreatic beta-cells.
    Kaneto H; Matsuoka TA; Kawashima S; Yamamoto K; Kato K; Miyatsuka T; Katakami N; Matsuhisa M
    Adv Drug Deliv Rev; 2009 Jul; 61(7-8):489-96. PubMed ID: 19393272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PDX-1 and MafA play a crucial role in pancreatic beta-cell differentiation and maintenance of mature beta-cell function.
    Kaneto H; Miyatsuka T; Kawamori D; Yamamoto K; Kato K; Shiraiwa T; Katakami N; Yamasaki Y; Matsuhisa M; Matsuoka TA
    Endocr J; 2008 May; 55(2):235-52. PubMed ID: 17938503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insulin but not glucagon gene is silenced in human pancreas-derived mesenchymal stem cells.
    Wilson LM; Wong SH; Yu N; Geras-Raaka E; Raaka BM; Gershengorn MC
    Stem Cells; 2009 Nov; 27(11):2703-11. PubMed ID: 19785038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PDX1, Neurogenin-3, and MAFA: critical transcription regulators for beta cell development and regeneration.
    Zhu Y; Liu Q; Zhou Z; Ikeda Y
    Stem Cell Res Ther; 2017 Nov; 8(1):240. PubMed ID: 29096722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of PDX-1 and MafA as a potential therapeutic target for diabetes.
    Kaneto H; Miyatsuka T; Fujitani Y; Noguchi H; Song KH; Yoon KH; Matsuoka TA
    Diabetes Res Clin Pract; 2007 Sep; 77 Suppl 1():S127-37. PubMed ID: 17449132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differentiation of iPSCs into insulin-producing cells via adenoviral transfection of PDX-1, NeuroD1 and MafA.
    Wang L; Huang Y; Guo Q; Fan X; Lu Y; Zhu S; Wang Y; Bo X; Chang X; Zhu M; Wang Z
    Diabetes Res Clin Pract; 2014 Jun; 104(3):383-92. PubMed ID: 24794627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relative contribution of PDX-1, MafA and E47/beta2 to the regulation of the human insulin promoter.
    Docherty HM; Hay CW; Ferguson LA; Barrow J; Durward E; Docherty K
    Biochem J; 2005 Aug; 389(Pt 3):813-20. PubMed ID: 15862113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Roles and regulation of transcription factor MafA in islet beta-cells.
    Aramata S; Han SI; Kataoka K
    Endocr J; 2007 Dec; 54(5):659-66. PubMed ID: 17785922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hepatitis B X-interacting protein promotes the formation of the insulin gene-transcribing protein complex Pdx-1/Neurod1 in animal pancreatic β-cells.
    Li H; Wang Z; Li Y; Fang R; Wang H; Shi H; Zhang X; Zhang W; Ye L
    J Biol Chem; 2018 Feb; 293(6):2053-2065. PubMed ID: 29259128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Krüppel-like protein Gli-similar 3 (Glis3) functions as a key regulator of insulin transcription.
    ZeRuth GT; Takeda Y; Jetten AM
    Mol Endocrinol; 2013 Oct; 27(10):1692-705. PubMed ID: 23927931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The study of regulatory effects of Pdx-1, MafA and NeuroD1 on the activity of porcine insulin promoter and the expression of human islet amyloid polypeptide.
    Liu XD; Ruan JX; Xia JH; Yang SL; Fan JH; Li K
    Mol Cell Biochem; 2014 Sep; 394(1-2):59-66. PubMed ID: 24825179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reprogramming of pancreatic exocrine cells towards a beta (β) cell character using Pdx1, Ngn3 and MafA.
    Akinci E; Banga A; Greder LV; Dutton JR; Slack JM
    Biochem J; 2012 Mar; 442(3):539-50. PubMed ID: 22150363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined transfection of the three transcriptional factors, PDX-1, NeuroD1, and MafA, causes differentiation of bone marrow mesenchymal stem cells into insulin-producing cells.
    Guo QS; Zhu MY; Wang L; Fan XJ; Lu YH; Wang ZW; Zhu SJ; Wang Y; Huang Y
    Exp Diabetes Res; 2012; 2012():672013. PubMed ID: 22761608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes.
    Fu Z; Gilbert ER; Liu D
    Curr Diabetes Rev; 2013 Jan; 9(1):25-53. PubMed ID: 22974359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The islet beta cell-enriched MafA activator is a key regulator of insulin gene transcription.
    Zhao L; Guo M; Matsuoka TA; Hagman DK; Parazzoli SD; Poitout V; Stein R
    J Biol Chem; 2005 Mar; 280(12):11887-94. PubMed ID: 15665000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combination of MafA, PDX-1 and NeuroD is a useful tool to efficiently induce insulin-producing surrogate beta-cells.
    Kaneto H; Matsuoka TA; Katakami N; Matsuhisa M
    Curr Med Chem; 2009; 16(24):3144-51. PubMed ID: 19689288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crucial role of PDX-1 in pancreas development, beta-cell differentiation, and induction of surrogate beta-cells.
    Kaneto H; Miyatsuka T; Shiraiwa T; Yamamoto K; Kato K; Fujitani Y; Matsuoka TA
    Curr Med Chem; 2007; 14(16):1745-52. PubMed ID: 17627512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Transcription factors in the adult beta cell].
    Lazo-de-la-Vega-Monroy ML; Fernández-Mejía C
    Rev Invest Clin; 2009; 61(5):428-46. PubMed ID: 20184103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptional regulation of α-cell differentiation.
    Bramswig NC; Kaestner KH
    Diabetes Obes Metab; 2011 Oct; 13 Suppl 1():13-20. PubMed ID: 21824252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.