These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 18778376)

  • 1. A simple and fast method for determining colony forming units.
    Sieuwerts S; de Bok FA; Mols E; de vos WM; Vlieg JE
    Lett Appl Microbiol; 2008 Oct; 47(4):275-8. PubMed ID: 18778376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lessons from the organization of a proficiency testing program in food microbiology by interlaboratory comparison: analytical methods in use, impact of methods on bacterial counts and measurement uncertainty of bacterial counts.
    Augustin JC; Carlier V
    Food Microbiol; 2006 Feb; 23(1):1-38. PubMed ID: 16942983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simplified method to automatically count bacterial colony forming unit.
    Putman M; Burton R; Nahm MH
    J Immunol Methods; 2005 Jul; 302(1-2):99-102. PubMed ID: 16002082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multicolour digital image analysis system for identification of bacteria and concurrent assessment of their respiratory activity.
    Ogawa M; Tani K; Ochiai A; Yamaguchi N; Nasu M
    J Appl Microbiol; 2005; 98(5):1101-6. PubMed ID: 15836479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of agar-based methods for the isolation and enumeration of heterotrophic bacteria with the new multidose IDEXX SimPlate method.
    Vulindlu M; Charlett A; Surman S; Lee JV
    Water Sci Technol; 2004; 50(1):277-80. PubMed ID: 15318522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of a microfluidic device for counting of bacteria.
    Inatomi KI; Izuo SI; Lee SS
    Lett Appl Microbiol; 2006 Sep; 43(3):296-300. PubMed ID: 16910935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterotrophic plate count methodology in the United States.
    Reasoner DJ
    Int J Food Microbiol; 2004 May; 92(3):307-15. PubMed ID: 15145589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid and automated enumeration of viable bacteria in compost using a micro-colony auto counting system.
    Wang X; Yamaguchi N; Someya T; Nasu M
    J Microbiol Methods; 2007 Oct; 71(1):1-6. PubMed ID: 17669529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of measurement uncertainty for quantitative methods of analysis: comparative assessment of the precision (uncertainty) of bacterial colony counts.
    Jarvis B; Hedges AJ; Corry JE
    Int J Food Microbiol; 2007 May; 116(1):44-51. PubMed ID: 17316860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of the methods for enumerating coliform bacteria from water samples using precise reference standards.
    Wohlsen T; Bates J; Vesey G; Robinson WA; Katouli M
    Lett Appl Microbiol; 2006 Apr; 42(4):350-6. PubMed ID: 16599987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid bacterial counts in metal working fluids.
    Sloyer JL; Novitsky TJ; Nugent S
    J Ind Microbiol Biotechnol; 2002 Dec; 29(6):323-4. PubMed ID: 12483472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modern microbiological methods for foods: colony count and direct count methods. A review.
    García-Armesto MR; Prieto M; García-López ML; Otero A; Moreno B
    Microbiologia; 1993 Apr; 9(1):1-13. PubMed ID: 8397961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction of high-density bacterial colony arrays and patterns by the ink-jet method.
    Xu T; Petridou S; Lee EH; Roth EA; Vyavahare NR; Hickman JJ; Boland T
    Biotechnol Bioeng; 2004 Jan; 85(1):29-33. PubMed ID: 14705009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A method for multiple synchronous collection of airborne organisms and the effects on colony counts of various processing procedures.
    Taylor GJ; Leeming JP
    J Appl Bacteriol; 1993 Feb; 74(2):174-80. PubMed ID: 8444647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantification of uncultured microorganisms by fluorescence microscopy and digital image analysis.
    Daims H; Wagner M
    Appl Microbiol Biotechnol; 2007 May; 75(2):237-48. PubMed ID: 17333172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonrecovery of varying proportions of viable bacteria during spread plating governed by the extent of spreader usage and proposal for an alternate spotting-spreading approach to maximize the CFU.
    Thomas P; Sekhar AC; Mujawar MM
    J Appl Microbiol; 2012 Aug; 113(2):339-50. PubMed ID: 22563785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid monitoring of microbial contamination on herbal medicines by fluorescent staining method.
    Nakajima K; Nonaka K; Yamamoto K; Yamaguchi N; Tani K; Nasu M
    Lett Appl Microbiol; 2005; 40(2):128-32. PubMed ID: 15644112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacteria counting with impedance spectroscopy in a micro probe station.
    Jönsson M; Welch K; Hamp S; Strømme M
    J Phys Chem B; 2006 May; 110(20):10165-9. PubMed ID: 16706478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated counting of mammalian cell colonies by means of a flat bed scanner and image processing.
    Dahle J; Kakar M; Steen HB; Kaalhus O
    Cytometry A; 2004 Aug; 60(2):182-8. PubMed ID: 15290719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid detection and counting of viable beer-spoilage lactic acid bacteria using a monoclonal chemiluminescence enzyme immunoassay and a CCD camera.
    March C; Manclús JJ; Abad A; Navarro A; Montoya A
    J Immunol Methods; 2005 Aug; 303(1-2):92-104. PubMed ID: 16005466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.