BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 18778753)

  • 1. Use of calcium imaging for analysis of neuronal gap junction coupling.
    Arumugam H; Denisova JV; Neve RL; Corriveau RA; Belousov AB
    Neurosci Lett; 2008 Nov; 445(1):26-30. PubMed ID: 18778753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gap junctions are required for NMDA receptor dependent cell death in developing neurons.
    de Rivero Vaccari JC; Corriveau RA; Belousov AB
    J Neurophysiol; 2007 Nov; 98(5):2878-86. PubMed ID: 17855590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GABAB receptor-mediated regulation of glutamate-activated calcium transients in hypothalamic and cortical neuron development.
    Obrietan K; van den Pol AN
    J Neurophysiol; 1999 Jul; 82(1):94-102. PubMed ID: 10400938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NMDA receptors regulate developmental gap junction uncoupling via CREB signaling.
    Arumugam H; Liu X; Colombo PJ; Corriveau RA; Belousov AB
    Nat Neurosci; 2005 Dec; 8(12):1720-6. PubMed ID: 16299502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuronal gap junctions are required for NMDA receptor-mediated excitotoxicity: implications in ischemic stroke.
    Wang Y; Denisova JV; Kang KS; Fontes JD; Zhu BT; Belousov AB
    J Neurophysiol; 2010 Dec; 104(6):3551-6. PubMed ID: 20943940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of Spontaneous Electrical Activity in the Developing Cerebral Cortex-Mouse Subplate Zone.
    Singh MB; White JA; McKimm EJ; Milosevic MM; Antic SD
    Cereb Cortex; 2019 Jul; 29(8):3363-3379. PubMed ID: 30169554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glutamate hyperexcitability and seizure-like activity throughout the brain and spinal cord upon relief from chronic glutamate receptor blockade in culture.
    Van Den Pol AN; Obrietan K; Belousov A
    Neuroscience; 1996 Oct; 74(3):653-74. PubMed ID: 8884763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical imaging of large-scale correlated wave activity in the developing rat CNS.
    Momose-Sato Y; Honda Y; Sasaki H; Sato K
    J Neurophysiol; 2005 Aug; 94(2):1606-22. PubMed ID: 15872071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Irreversible loss of a subpopulation of cortical interneurons in the absence of glutamatergic network activity.
    de Lima AD; Opitz T; Voigt T
    Eur J Neurosci; 2004 Jun; 19(11):2931-43. PubMed ID: 15182300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GABAB receptor-mediated inhibition of GABAA receptor calcium elevations in developing hypothalamic neurons.
    Obrietan K; van den Pol AN
    J Neurophysiol; 1998 Mar; 79(3):1360-70. PubMed ID: 9497417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Astrocytic gap junctional communication decreases neuronal vulnerability to oxidative stress-induced disruption of Ca2+ homeostasis and cell death.
    Blanc EM; Bruce-Keller AJ; Mattson MP
    J Neurochem; 1998 Mar; 70(3):958-70. PubMed ID: 9489715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Local gamma-aminobutyric acid and glutamate circuit control of hypophyseotrophic corticotropin-releasing factor neuron activity in the paraventricular nucleus of the hypothalamus.
    Bartanusz V; Muller D; Gaillard RC; Streit P; Vutskits L; Kiss JZ
    Eur J Neurosci; 2004 Feb; 19(3):777-82. PubMed ID: 14984429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium hyperexcitability in neurons cultured with glutamate receptor blockade.
    Obrietan K; Van den Pol AN
    J Neurophysiol; 1995 Apr; 73(4):1524-36. PubMed ID: 7643164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interplay of chemical neurotransmitters regulates developmental increase in electrical synapses.
    Park WM; Wang Y; Park S; Denisova JV; Fontes JD; Belousov AB
    J Neurosci; 2011 Apr; 31(16):5909-20. PubMed ID: 21508216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gap junctional coupling and patterns of connexin expression among neonatal rat lumbar spinal motor neurons.
    Chang Q; Gonzalez M; Pinter MJ; Balice-Gordon RJ
    J Neurosci; 1999 Dec; 19(24):10813-28. PubMed ID: 10594064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adenosine pre- and postsynaptic modulation of glutamate-dependent calcium activity in hypothalamic neurons.
    Obrietan K; Belousov AB; Heller HC; van den Pol AN
    J Neurophysiol; 1995 Nov; 74(5):2150-62. PubMed ID: 8592203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrophysiological properties and thermosensitivity of mouse preoptic and anterior hypothalamic neurons in culture.
    Tabarean IV; Conti B; Behrens M; Korn H; Bartfai T
    Neuroscience; 2005; 135(2):433-49. PubMed ID: 16112471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large-scale oscillatory calcium waves in the immature cortex.
    Garaschuk O; Linn J; Eilers J; Konnerth A
    Nat Neurosci; 2000 May; 3(5):452-9. PubMed ID: 10769384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NMDA receptor-mediated differential laminar susceptibility to the intracellular Ca2+ accumulation induced by oxygen-glucose deprivation in rat neocortical slices.
    Fukuda A; Muramatsu K; Okabe A; Shimano Y; Hida H; Fujimoto I; Nishino H
    J Neurophysiol; 1998 Jan; 79(1):430-8. PubMed ID: 9425211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oroxylin A increases BDNF production by activation of MAPK-CREB pathway in rat primary cortical neuronal culture.
    Jeon SJ; Rhee SY; Seo JE; Bak HR; Lee SH; Ryu JH; Cheong JH; Shin CY; Kim GH; Lee YS; Ko KH
    Neurosci Res; 2011 Mar; 69(3):214-22. PubMed ID: 21145362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.