These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 18779058)
1. Galactose metabolism in yeast-structure and regulation of the leloir pathway enzymes and the genes encoding them. Sellick CA; Campbell RN; Reece RJ Int Rev Cell Mol Biol; 2008; 269():111-50. PubMed ID: 18779058 [TBL] [Abstract][Full Text] [Related]
2. The yeast galactose genetic switch is mediated by the formation of a Gal4p-Gal80p-Gal3p complex. Platt A; Reece RJ EMBO J; 1998 Jul; 17(14):4086-91. PubMed ID: 9670023 [TBL] [Abstract][Full Text] [Related]
3. Galactose-dependent reversible interaction of Gal3p with Gal80p in the induction pathway of Gal4p-activated genes of Saccharomyces cerevisiae. Yano K; Fukasawa T Proc Natl Acad Sci U S A; 1997 Mar; 94(5):1721-6. PubMed ID: 9050845 [TBL] [Abstract][Full Text] [Related]
4. Vectors allowing amplified expression of the Saccharomyces cerevisiae Gal3p-Gal80p-Gal4p transcription switch: applications to galactose-regulated high-level production of proteins. Sil AK; Xin P; Hopper JE Protein Expr Purif; 2000 Mar; 18(2):202-12. PubMed ID: 10686151 [TBL] [Abstract][Full Text] [Related]
5. Analysis of the galactose signal transduction pathway in Saccharomyces cerevisiae: interaction between Gal3p and Gal80p. Suzuki-Fujimoto T; Fukuma M; Yano KI; Sakurai H; Vonika A; Johnston SA; Fukasawa T Mol Cell Biol; 1996 May; 16(5):2504-8. PubMed ID: 8628318 [TBL] [Abstract][Full Text] [Related]
7. Gal3p and Gal1p interact with the transcriptional repressor Gal80p to form a complex of 1:1 stoichiometry. Timson DJ; Ross HC; Reece RJ Biochem J; 2002 May; 363(Pt 3):515-20. PubMed ID: 11964151 [TBL] [Abstract][Full Text] [Related]
8. The Gal3p-Gal80p-Gal4p transcription switch of yeast: Gal3p destabilizes the Gal80p-Gal4p complex in response to galactose and ATP. Sil AK; Alam S; Xin P; Ma L; Morgan M; Lebo CM; Woods MP; Hopper JE Mol Cell Biol; 1999 Nov; 19(11):7828-40. PubMed ID: 10523671 [TBL] [Abstract][Full Text] [Related]
9. Localization and interaction of the proteins constituting the GAL genetic switch in Saccharomyces cerevisiae. Wightman R; Bell R; Reece RJ Eukaryot Cell; 2008 Dec; 7(12):2061-8. PubMed ID: 18952899 [TBL] [Abstract][Full Text] [Related]
10. D-galactose catabolism in Penicillium chrysogenum: Expression analysis of the structural genes of the Leloir pathway. Jónás Á; Fekete E; Németh Z; Flipphi M; Karaffa L Acta Biol Hung; 2016 Sep; 67(3):318-32. PubMed ID: 27630054 [TBL] [Abstract][Full Text] [Related]
11. Overexpression of human UDP-glucose pyrophosphorylase rescues galactose-1-phosphate uridyltransferase-deficient yeast. Lai K; Elsas LJ Biochem Biophys Res Commun; 2000 May; 271(2):392-400. PubMed ID: 10799308 [TBL] [Abstract][Full Text] [Related]
12. Transcriptional control of the GAL/MEL regulon of yeast Saccharomyces cerevisiae: mechanism of galactose-mediated signal transduction. Bhat PJ; Murthy TV Mol Microbiol; 2001 Jun; 40(5):1059-66. PubMed ID: 11401712 [TBL] [Abstract][Full Text] [Related]
13. Experimental and steady-state analysis of the GAL regulatory system in Kluyveromyces lactis. Pannala VR; Bhartiya S; Venkatesh KV FEBS J; 2010 Jul; 277(14):2987-3002. PubMed ID: 20528923 [TBL] [Abstract][Full Text] [Related]
14. Understanding a transcriptional paradigm at the molecular level. The structure of yeast Gal80p. Thoden JB; Sellick CA; Reece RJ; Holden HM J Biol Chem; 2007 Jan; 282(3):1534-8. PubMed ID: 17121853 [TBL] [Abstract][Full Text] [Related]
15. Mathematical model of GAL regulon dynamics in Saccharomyces cerevisiae. Apostu R; Mackey MC J Theor Biol; 2012 Jan; 293():219-35. PubMed ID: 22024631 [TBL] [Abstract][Full Text] [Related]
16. Improvement of galactose uptake in Saccharomyces cerevisiae through overexpression of phosphoglucomutase: example of transcript analysis as a tool in inverse metabolic engineering. Bro C; Knudsen S; Regenberg B; Olsson L; Nielsen J Appl Environ Microbiol; 2005 Nov; 71(11):6465-72. PubMed ID: 16269670 [TBL] [Abstract][Full Text] [Related]
17. Differential roles of the Leloir pathway enzymes and metabolites in defining galactose sensitivity in yeast. Ross KL; Davis CN; Fridovich-Keil JL Mol Genet Metab; 2004; 83(1-2):103-16. PubMed ID: 15464425 [TBL] [Abstract][Full Text] [Related]
18. Transcriptional rewiring of fungal galactose-metabolism circuitry. Martchenko M; Levitin A; Hogues H; Nantel A; Whiteway M Curr Biol; 2007 Jun; 17(12):1007-13. PubMed ID: 17540568 [TBL] [Abstract][Full Text] [Related]
19. Interplay of a ligand sensor and an enzyme in controlling expression of the Saccharomyces cerevisiae GAL genes. Abramczyk D; Holden S; Page CJ; Reece RJ Eukaryot Cell; 2012 Mar; 11(3):334-42. PubMed ID: 22210830 [TBL] [Abstract][Full Text] [Related]
20. Pleiotropy and GAL pathway degeneration in yeast. MacLean RC J Evol Biol; 2007 Jul; 20(4):1333-8. PubMed ID: 17584228 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]