These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 18779098)

  • 1. The effects of cell sizes, environmental conditions, and growth phases on the strength of individual W303 yeast cells inside ESEM.
    Ahmad MR; Nakajima M; Kojima S; Homma M; Fukuda T
    IEEE Trans Nanobioscience; 2008 Sep; 7(3):185-93. PubMed ID: 18779098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoindentation methods to measure viscoelastic properties of single cells using sharp, flat, and buckling tips inside ESEM.
    Ahmad MR; Nakajima M; Kojima S; Homma M; Fukuda T
    IEEE Trans Nanobioscience; 2010 Mar; 9(1):12-23. PubMed ID: 19887332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of ambient humidity on the strength of the adhesion force of single yeast cell inside environmental-SEM.
    Shen Y; Nakajima M; Ahmad MR; Kojima S; Homma M; Fukuda T
    Ultramicroscopy; 2011 Jul; 111(8):1176-83. PubMed ID: 21763235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanofork for single cells adhesion measurement via ESEM-nanomanipulator system.
    Ahmad MR; Nakajima M; Kojima M; Kojima S; Homma M; Fukuda T
    IEEE Trans Nanobioscience; 2012 Mar; 11(1):70-8. PubMed ID: 22275723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical sensing of the penetration of various nanoneedles into a living cell using atomic force microscopy.
    Obataya I; Nakamura C; Han S; Nakamura N; Miyake J
    Biosens Bioelectron; 2005 Feb; 20(8):1652-5. PubMed ID: 15626623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single cell stiffness measurement at various humidity conditions by nanomanipulation of a nano-needle.
    Shen Y; Nakajima M; Yang Z; Tajima H; Najdovski Z; Homma M; Fukuda T
    Nanotechnology; 2013 Apr; 24(14):145703. PubMed ID: 23507613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomic force microscopy studies on the nanomechanical properties of Saccharomyces cerevisiae.
    Arfsten J; Leupold S; Bradtmöller C; Kampen I; Kwade A
    Colloids Surf B Biointerfaces; 2010 Aug; 79(1):284-90. PubMed ID: 20452756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the single yeast cell's adhesion to ITO substrates with various surface energies via ESEM nanorobotic manipulation system.
    Shen Y; Ahmad MR; Nakajima M; Kojima S; Homma M; Fukuda T
    IEEE Trans Nanobioscience; 2011 Dec; 10(4):217-24. PubMed ID: 22249767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-hydrostatic-pressure treatment impairs actin cables and budding in Saccharomyces cerevisiae.
    Kawarai T; Arai S; Furukawa S; Ogihara H; Yamasaki M
    J Biosci Bioeng; 2006 Jun; 101(6):515-8. PubMed ID: 16935255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Creep indentation of single cells.
    Koay EJ; Shieh AC; Athanasiou KA
    J Biomech Eng; 2003 Jun; 125(3):334-41. PubMed ID: 12929237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a piezo-actuated micro-teleoperation system for cell manipulation.
    Zareinejad M; Rezaei SM; Abdullah A; Shiry Ghidary S
    Int J Med Robot; 2009 Mar; 5(1):66-76. PubMed ID: 19177336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microtechnologies and nanotechnologies for single-cell analysis.
    Andersson H; van den Berg A
    Curr Opin Biotechnol; 2004 Feb; 15(1):44-9. PubMed ID: 15102465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dielectrophoresis tweezers for single cell manipulation.
    Hunt TP; Westervelt RM
    Biomed Microdevices; 2006 Sep; 8(3):227-30. PubMed ID: 16718407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-distance propagation of forces in a cell.
    Wang N; Suo Z
    Biochem Biophys Res Commun; 2005 Mar; 328(4):1133-8. PubMed ID: 15707995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical properties of single living cells encapsulated in polyelectrolyte matrixes.
    Svaldo Lanero T; Cavalleri O; Krol S; Rolandi R; Gliozzi A
    J Biotechnol; 2006 Aug; 124(4):723-31. PubMed ID: 16600412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nano-opto-mechanical characterization of neuron membrane mechanics under cellular growth and differentiation.
    Gopal A; Luo Z; Lee JY; Kumar K; Li B; Hoshino K; Schmidt C; Ho PS; Zhang X
    Biomed Microdevices; 2008 Oct; 10(5):611-22. PubMed ID: 18483864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of the morphology, viability and mechanical properties of yeast cells in environmental SEM.
    Ren Y; Donald AM; Zhang Z
    Scanning; 2008; 30(6):435-42. PubMed ID: 18683192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overcoming shear stress of microalgae cultures in sparged photobioreactors.
    Barbosa MJ; Hadiyanto ; Wijffels RH
    Biotechnol Bioeng; 2004 Jan; 85(1):78-85. PubMed ID: 14705014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rolled-up transparent microtubes as two-dimensionally confined culture scaffolds of individual yeast cells.
    Huang G; Mei Y; Thurmer DJ; Coric E; Schmidt OG
    Lab Chip; 2009 Jan; 9(2):263-8. PubMed ID: 19107283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A uniaxial bioMEMS device for quantitative force-displacement measurements.
    Serrell DB; Oreskovic TL; Slifka AJ; Mahajan RL; Finch DS
    Biomed Microdevices; 2007 Apr; 9(2):267-75. PubMed ID: 17187300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.