BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 18779216)

  • 1. Identification of kaonashi mutants showing abnormal pollen exine structure in Arabidopsis thaliana.
    Suzuki T; Masaoka K; Nishi M; Nakamura K; Ishiguro S
    Plant Cell Physiol; 2008 Oct; 49(10):1465-77. PubMed ID: 18779216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ATP-binding cassette transporter G26 is required for male fertility and pollen exine formation in Arabidopsis.
    Quilichini TD; Friedmann MC; Samuels AL; Douglas CJ
    Plant Physiol; 2010 Oct; 154(2):678-90. PubMed ID: 20732973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arabidopsis RPG1 is important for primexine deposition and functions redundantly with RPG2 for plant fertility at the late reproductive stage.
    Sun MX; Huang XY; Yang J; Guan YF; Yang ZN
    Plant Reprod; 2013 Jun; 26(2):83-91. PubMed ID: 23686221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two callose synthases, GSL1 and GSL5, play an essential and redundant role in plant and pollen development and in fertility.
    Enns LC; Kanaoka MM; Torii KU; Comai L; Okada K; Cleland RE
    Plant Mol Biol; 2005 Jun; 58(3):333-49. PubMed ID: 16021399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Callose synthase (CalS5) is required for exine formation during microgametogenesis and for pollen viability in Arabidopsis.
    Dong X; Hong Z; Sivaramakrishnan M; Mahfouz M; Verma DP
    Plant J; 2005 May; 42(3):315-28. PubMed ID: 15842618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Callose (beta-1,3 glucan) is essential for Arabidopsis pollen wall patterning, but not tube growth.
    Nishikawa S; Zinkl GM; Swanson RJ; Maruyama D; Preuss D
    BMC Plant Biol; 2005 Oct; 5():22. PubMed ID: 16212660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrastructural characterization of exine development of the transient defective exine 1 mutant suggests the existence of a factor involved in constructing reticulate exine architecture from sporopollenin aggregates.
    Ariizumi T; Kawanabe T; Hatakeyama K; Sato S; Kato T; Tabata S; Toriyama K
    Plant Cell Physiol; 2008 Jan; 49(1):58-67. PubMed ID: 18045813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic regulation of sporopollenin synthesis and pollen exine development.
    Ariizumi T; Toriyama K
    Annu Rev Plant Biol; 2011; 62():437-60. PubMed ID: 21275644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Loss of THIN EXINE2 disrupts multiple processes in the mechanism of pollen exine formation.
    Wang R; Dobritsa AA
    Plant Physiol; 2021 Sep; 187(1):133-157. PubMed ID: 34618131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Arabidopsis Exine Formation Defect (EFD) gene is required for primexine patterning and is critical for pollen fertility.
    Hu J; Wang Z; Zhang L; Sun MX
    New Phytol; 2014 Jul; 203(1):140-54. PubMed ID: 24697753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. KNS4/UPEX1: A Type II Arabinogalactan β-(1,3)-Galactosyltransferase Required for Pollen Exine Development.
    Suzuki T; Narciso JO; Zeng W; van de Meene A; Yasutomi M; Takemura S; Lampugnani ER; Doblin MS; Bacic A; Ishiguro S
    Plant Physiol; 2017 Jan; 173(1):183-205. PubMed ID: 27837085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LAP5 and LAP6 encode anther-specific proteins with similarity to chalcone synthase essential for pollen exine development in Arabidopsis.
    Dobritsa AA; Lei Z; Nishikawa S; Urbanczyk-Wochniak E; Huhman DV; Preuss D; Sumner LW
    Plant Physiol; 2010 Jul; 153(3):937-55. PubMed ID: 20442277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. IMPERFECTIVE EXINE FORMATION (IEF) is required for exine formation and male fertility in Arabidopsis.
    Wang K; Zhao X; Pang C; Zhou S; Qian X; Tang N; Yang N; Xu P; Xu X; Gao J
    Plant Mol Biol; 2021 Apr; 105(6):625-635. PubMed ID: 33481140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Arabidopsis CALLOSE DEFECTIVE MICROSPORE1 gene is required for male fertility through regulating callose metabolism during microsporogenesis.
    Lu P; Chai M; Yang J; Ning G; Wang G; Ma H
    Plant Physiol; 2014 Apr; 164(4):1893-904. PubMed ID: 24567187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CYP704B1 is a long-chain fatty acid omega-hydroxylase essential for sporopollenin synthesis in pollen of Arabidopsis.
    Dobritsa AA; Shrestha J; Morant M; Pinot F; Matsuno M; Swanson R; Møller BL; Preuss D
    Plant Physiol; 2009 Oct; 151(2):574-89. PubMed ID: 19700560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel male-sterile mutant of Arabidopsis thaliana, faceless pollen-1, produces pollen with a smooth surface and an acetolysis-sensitive exine.
    Ariizumi T; Hatakeyama K; Hinata K; Sato S; Kato T; Tabata S; Toriyama K
    Plant Mol Biol; 2003 Sep; 53(1-2):107-16. PubMed ID: 14756310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Precocious pollen germination in Arabidopsis plants with altered callose deposition during microsporogenesis.
    Xie B; Wang X; Hong Z
    Planta; 2010 Mar; 231(4):809-23. PubMed ID: 20039178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of Glycosyltransferases in Pollen Wall Primexine Formation and Exine Patterning.
    Li WL; Liu Y; Douglas CJ
    Plant Physiol; 2017 Jan; 173(1):167-182. PubMed ID: 27495941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ABCG26-mediated polyketide trafficking and hydroxycinnamoyl spermidines contribute to pollen wall exine formation in Arabidopsis.
    Quilichini TD; Samuels AL; Douglas CJ
    Plant Cell; 2014 Nov; 26(11):4483-98. PubMed ID: 25415974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AUXIN RESPONSE FACTOR17 is essential for pollen wall pattern formation in Arabidopsis.
    Yang J; Tian L; Sun MX; Huang XY; Zhu J; Guan YF; Jia QS; Yang ZN
    Plant Physiol; 2013 Jun; 162(2):720-31. PubMed ID: 23580594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.