These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 18779235)

  • 1. Predicting gene targets of perturbations via network-based filtering of mRNA expression compendia.
    Cosgrove EJ; Zhou Y; Gardner TS; Kolaczyk ED
    Bioinformatics; 2008 Nov; 24(21):2482-90. PubMed ID: 18779235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improvement of experimental testing and network training conditions with genome-wide microarrays for more accurate predictions of drug gene targets.
    Christadore LM; Pham L; Kolaczyk ED; Schaus SE
    BMC Syst Biol; 2014 Jan; 8():7. PubMed ID: 24444313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inferring gene targets of drugs and chemical compounds from gene expression profiles.
    Noh H; Gunawan R
    Bioinformatics; 2016 Jul; 32(14):2120-7. PubMed ID: 27153589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Many Microbe Microarrays Database: uniformly normalized Affymetrix compendia with structured experimental metadata.
    Faith JJ; Driscoll ME; Fusaro VA; Cosgrove EJ; Hayete B; Juhn FS; Schneider SJ; Gardner TS
    Nucleic Acids Res; 2008 Jan; 36(Database issue):D866-70. PubMed ID: 17932051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactively optimizing signal-to-noise ratios in expression profiling: project-specific algorithm selection and detection p-value weighting in Affymetrix microarrays.
    Seo J; Bakay M; Chen YW; Hilmer S; Shneiderman B; Hoffman EP
    Bioinformatics; 2004 Nov; 20(16):2534-44. PubMed ID: 15117752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inferring gene regulatory networks from multiple microarray datasets.
    Wang Y; Joshi T; Zhang XS; Xu D; Chen L
    Bioinformatics; 2006 Oct; 22(19):2413-20. PubMed ID: 16864593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HykGene: a hybrid approach for selecting marker genes for phenotype classification using microarray gene expression data.
    Wang Y; Makedon FS; Ford JC; Pearlman J
    Bioinformatics; 2005 Apr; 21(8):1530-7. PubMed ID: 15585531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SCNrank: spectral clustering for network-based ranking to reveal potential drug targets and its application in pancreatic ductal adenocarcinoma.
    Liu E; Zhang ZZ; Cheng X; Liu X; Cheng L
    BMC Med Genomics; 2020 Apr; 13(Suppl 5):50. PubMed ID: 32241274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Defining transcriptional networks through integrative modeling of mRNA expression and transcription factor binding data.
    Gao F; Foat BC; Bussemaker HJ
    BMC Bioinformatics; 2004 Mar; 5():31. PubMed ID: 15113405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Incorporating prior biological knowledge for network-based differential gene expression analysis using differentially weighted graphical LASSO.
    Zuo Y; Cui Y; Yu G; Li R; Ressom HW
    BMC Bioinformatics; 2017 Feb; 18(1):99. PubMed ID: 28187708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring the functional landscape of gene expression: directed search of large microarray compendia.
    Hibbs MA; Hess DC; Myers CL; Huttenhower C; Li K; Troyanskaya OG
    Bioinformatics; 2007 Oct; 23(20):2692-9. PubMed ID: 17724061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the choice and number of microarrays for transcriptional regulatory network inference.
    Cosgrove EJ; Gardner TS; Kolaczyk ED
    BMC Bioinformatics; 2010 Sep; 11():454. PubMed ID: 20825684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
    Yang B; Xu Y; Maxwell A; Koh W; Gong P; Zhang C
    BMC Syst Biol; 2018 Dec; 12(Suppl 7):115. PubMed ID: 30547796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reverse engineering and analysis of genome-wide gene regulatory networks from gene expression profiles using high-performance computing.
    Belcastro V; Gregoretti F; Siciliano V; Santoro M; D'Angelo G; Oliva G; di Bernardo D
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(3):668-78. PubMed ID: 21464509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Network inference algorithms elucidate Nrf2 regulation of mouse lung oxidative stress.
    Taylor RC; Acquaah-Mensah G; Singhal M; Malhotra D; Biswal S
    PLoS Comput Biol; 2008 Aug; 4(8):e1000166. PubMed ID: 18769717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methods for labeling error detection in microarrays based on the effect of data perturbation on the regression model.
    Zhang C; Wu C; Blanzieri E; Zhou Y; Wang Y; Du W; Liang Y
    Bioinformatics; 2009 Oct; 25(20):2708-14. PubMed ID: 19661242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A model-based optimization framework for the inference on gene regulatory networks from DNA array data.
    Thomas R; Mehrotra S; Papoutsakis ET; Hatzimanikatis V
    Bioinformatics; 2004 Nov; 20(17):3221-35. PubMed ID: 15247105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. eXPatGen: generating dynamic expression patterns for the systematic evaluation of analytical methods.
    Michaud DJ; Marsh AG; Dhurjati PS
    Bioinformatics; 2003 Jun; 19(9):1140-6. PubMed ID: 12801875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of regulatory networks: genome-wide identification of transcription factor targets from gene expression data.
    Qian J; Lin J; Luscombe NM; Yu H; Gerstein M
    Bioinformatics; 2003 Oct; 19(15):1917-26. PubMed ID: 14555624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Gibbs sampler for the identification of gene expression and network connectivity consistency.
    Brynildsen MP; Tran LM; Liao JC
    Bioinformatics; 2006 Dec; 22(24):3040-6. PubMed ID: 17060361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.