BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 18780297)

  • 1. Influence of blood flow and millimeter wave exposure on skin temperature in different thermal models.
    Alekseev SI; Ziskin MC
    Bioelectromagnetics; 2009 Jan; 30(1):52-8. PubMed ID: 18780297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Local heating of human skin by millimeter waves: effect of blood flow.
    Alekseev SI; Radzievsky AA; Szabo I; Ziskin MC
    Bioelectromagnetics; 2005 Sep; 26(6):489-501. PubMed ID: 15931684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport lattice models of heat transport in skin with spatially heterogeneous, temperature-dependent perfusion.
    Gowrishankar TR; Stewart DA; Martin GT; Weaver JC
    Biomed Eng Online; 2004 Nov; 3(1):42. PubMed ID: 15548324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of dielectric permittivities on skin heating due to millimeter wave exposure.
    Kanezaki A; Hirata A; Watanabe S; Shirai H
    Biomed Eng Online; 2009 Sep; 8():20. PubMed ID: 19775447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of blood flow on skin heating induced by millimeter wave irradiation in humans.
    Walters TJ; Ryan KL; Nelson DA; Blick DW; Mason PA
    Health Phys; 2004 Feb; 86(2):115-20. PubMed ID: 14744044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heat analysis of biological tissue exposed to microwave by using thermal wave model of bio-heat transfer (TWMBT).
    Ozen S; Helhel S; Cerezci O
    Burns; 2008 Feb; 34(1):45-9. PubMed ID: 17624675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parameter variation effects on temperature elevation in a steady-state, one-dimensional thermal model for millimeter wave exposure of one- and three-layer human tissue.
    Kanezaki A; Hirata A; Watanabe S; Shirai H
    Phys Med Biol; 2010 Aug; 55(16):4647-59. PubMed ID: 20671356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal Response of Human Skin to Microwave Energy: A Critical Review.
    Foster KR; Ziskin MC; Balzano Q
    Health Phys; 2016 Dec; 111(6):528-541. PubMed ID: 27798477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Local heating of murine skin by millimeter waves based on HBHE].
    Hu SX; Fan CL; Yang L; Sun FR
    Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Jul; 32(7):1909-12. PubMed ID: 23016351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analytical analysis of the Pennes bioheat transfer equation with sinusoidal heat flux condition on skin surface.
    Shih TC; Yuan P; Lin WL; Kou HS
    Med Eng Phys; 2007 Nov; 29(9):946-53. PubMed ID: 17137825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Model of Steady-state Temperature Rise in Multilayer Tissues Due to Narrow-beam Millimeter-wave Radiofrequency Field Exposure.
    Gajda GB; Lemay E; Paradis J
    Health Phys; 2019 Sep; 117(3):254-266. PubMed ID: 31125321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inter-species extrapolation of skin heating resulting from millimeter wave irradiation: modeling and experimental results.
    Nelson DA; Walters TJ; Ryan KL; Emerton KB; Hurt WD; Ziriax JM; Johnson LR; Mason PA
    Health Phys; 2003 May; 84(5):608-15. PubMed ID: 12747480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tissue models for RF exposure evaluation at frequencies above 6 GHz.
    Ziskin MC; Alekseev SI; Foster KR; Balzano Q
    Bioelectromagnetics; 2018 Apr; 39(3):173-189. PubMed ID: 29418010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parameter variation effects on millimeter wave dosimetry based on precise skin thickness in real rats.
    Li K; Hikage T; Masuda H; Ijima E; Nagai A; Taguchi K
    Sci Rep; 2023 Oct; 13(1):17397. PubMed ID: 37833400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature and burn injury prediction of human skin exposed to microwaves: a model analysis.
    Ozen S; Helhel S; Bilgin S
    Radiat Environ Biophys; 2011 Aug; 50(3):483-9. PubMed ID: 21533655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of model parameter values on the prediction of skin surface temperature: II. Contact problems.
    Cui ZF; Barbenel JC
    Phys Med Biol; 1991 Dec; 36(12):1607-20. PubMed ID: 1771183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heat transfer analysis of skin during thermal therapy using thermal wave equation.
    Kashcooli M; Salimpour MR; Shirani E
    J Therm Biol; 2017 Feb; 64():7-18. PubMed ID: 28166948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of thermal properties and geometrical dimensions on skin burn injuries.
    Jiang SC; Ma N; Li HJ; Zhang XX
    Burns; 2002 Dec; 28(8):713-7. PubMed ID: 12464468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elderly bioheat modeling: changes in physiology, thermoregulation, and blood flow circulation.
    Rida M; Ghaddar N; Ghali K; Hoballah J
    Int J Biometeorol; 2014 Nov; 58(9):1825-43. PubMed ID: 24464496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Boundary element method with bioheat equation for skin burn injury.
    Ng EY; Tan HM; Ooi EH
    Burns; 2009 Nov; 35(7):987-97. PubMed ID: 19427127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.