These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 18780343)

  • 1. Performance of density functional models to reproduce observed (13)C(alpha) chemical shifts of proteins in solution.
    Vila JA; Baldoni HA; Scheraga HA
    J Comput Chem; 2009 Apr; 30(6):884-92. PubMed ID: 18780343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting 13Calpha chemical shifts for validation of protein structures.
    Vila JA; Villegas ME; Baldoni HA; Scheraga HA
    J Biomol NMR; 2007 Jul; 38(3):221-35. PubMed ID: 17558470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Factors affecting the use of 13C(alpha) chemical shifts to determine, refine, and validate protein structures.
    Vila JA; Scheraga HA
    Proteins; 2008 May; 71(2):641-54. PubMed ID: 17975838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon-13 NMR shielding in the twenty common amino acids: comparisons with experimental results in proteins.
    Sun H; Sanders LK; Oldfield E
    J Am Chem Soc; 2002 May; 124(19):5486-95. PubMed ID: 11996591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing the accuracy of protein structures by quantum mechanical computations of 13C(alpha) chemical shifts.
    Vila JA; Scheraga HA
    Acc Chem Res; 2009 Oct; 42(10):1545-53. PubMed ID: 19572703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum chemical 13C(alpha) chemical shift calculations for protein NMR structure determination, refinement, and validation.
    Vila JA; Aramini JM; Rossi P; Kuzin A; Su M; Seetharaman J; Xiao R; Tong L; Montelione GT; Scheraga HA
    Proc Natl Acad Sci U S A; 2008 Sep; 105(38):14389-94. PubMed ID: 18787110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. What can we learn by computing 13Calpha chemical shifts for X-ray protein models?
    Arnautova YA; Vila JA; Martin OA; Scheraga HA
    Acta Crystallogr D Biol Crystallogr; 2009 Jul; 65(Pt 7):697-703. PubMed ID: 19564690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systematic studies on the computation of nuclear magnetic resonance shielding constants and chemical shifts: the density functional models.
    Wu A; Zhang Y; Xu X; Yan Y
    J Comput Chem; 2007 Nov; 28(15):2431-42. PubMed ID: 17722026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward the quantum chemical calculation of nuclear magnetic resonance chemical shifts of proteins.
    Frank A; Onila I; Möller HM; Exner TE
    Proteins; 2011 Jul; 79(7):2189-202. PubMed ID: 21557322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Are accurate computations of the 13C' shielding feasible at the DFT level of theory?
    Vila JA; Arnautova YA; Martin OA; Scheraga HA
    J Comput Chem; 2014 Feb; 35(4):309-12. PubMed ID: 24403017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational studies of 13C NMR chemical shifts of saccharides.
    Taubert S; Konschin H; Sundholm D
    Phys Chem Chem Phys; 2005 Jul; 7(13):2561-9. PubMed ID: 16189565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum-mechanics-derived 13Calpha chemical shift server (CheShift) for protein structure validation.
    Vila JA; Arnautova YA; Martin OA; Scheraga HA
    Proc Natl Acad Sci U S A; 2009 Oct; 106(40):16972-7. PubMed ID: 19805131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of 15N chemical shift anisotropy in a protein dissolved in a dilute liquid crystalline medium with the application of magic angle sample spinning.
    Kurita J; Shimahara H; Utsunomiya-Tate N; Tate S
    J Magn Reson; 2003 Jul; 163(1):163-73. PubMed ID: 12852920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Position dependence of the 13C chemical shifts of alpha-helical model peptides. Fingerprint of the 20 naturally occurring amino acids.
    Vila JA; Baldoni HA; Scheraga HA
    Protein Sci; 2004 Nov; 13(11):2939-48. PubMed ID: 15498939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unblocked statistical-coil tetrapeptides in aqueous solution: quantum-chemical computation of the carbon-13 NMR chemical shifts.
    Vila JA; Baldoni HA; Ripoll DR; Scheraga HA
    J Biomol NMR; 2003 Jun; 26(2):113-30. PubMed ID: 12766407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of 13Calpha and 13Cbeta chemical shifts of cysteine and cystine residues in proteins: a quantum chemical approach.
    Martin OA; Villegas ME; Vila JA; Scheraga HA
    J Biomol NMR; 2010 Mar; 46(3):217-25. PubMed ID: 20091207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Density functional calculations of backbone 15N shielding tensors in beta-sheet and turn residues of protein G.
    Cai L; Kosov DS; Fushman D
    J Biomol NMR; 2011 May; 50(1):19-33. PubMed ID: 21305337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated fragmentation quantum mechanical calculation of
    Shi M; Jin X; Wan Z; He X
    J Chem Phys; 2021 Feb; 154(6):064502. PubMed ID: 33588539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequential nearest-neighbor effects on computed 13Calpha chemical shifts.
    Vila JA; Serrano P; Wüthrich K; Scheraga HA
    J Biomol NMR; 2010 Sep; 48(1):23-30. PubMed ID: 20644980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fragment quantum mechanical calculation of proteins and its applications.
    He X; Zhu T; Wang X; Liu J; Zhang JZ
    Acc Chem Res; 2014 Sep; 47(9):2748-57. PubMed ID: 24851673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.