These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 18780735)

  • 1. On the detection of imprinted quantitative trait loci in line crosses: effect of linkage disequilibrium.
    Sandor C; Georges M
    Genetics; 2008 Oct; 180(2):1167-75. PubMed ID: 18780735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Bayesian method for simultaneously detecting Mendelian and imprinted quantitative trait loci in experimental crosses of outbred species.
    Hayashi T; Awata T
    Genetics; 2008 Jan; 178(1):527-38. PubMed ID: 18202392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the detection of imprinted quantitative trait loci in experimental crosses of outbred species.
    de Koning DJ; Bovenhuis H; van Arendonk JA
    Genetics; 2002 Jun; 161(2):931-8. PubMed ID: 12072486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Linkage disequilibrium with linkage analysis of multiline crosses reveals different multiallelic QTL for hybrid performance in the flint and dent heterotic groups of maize.
    Giraud H; Lehermeier C; Bauer E; Falque M; Segura V; Bauland C; Camisan C; Campo L; Meyer N; Ranc N; Schipprack W; Flament P; Melchinger AE; Menz M; Moreno-González J; Ouzunova M; Charcosset A; Schön CC; Moreau L
    Genetics; 2014 Dec; 198(4):1717-34. PubMed ID: 25271305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transmission disequilibrium test for quantitative trait loci detection in livestock populations.
    Kolbehdari D; Jansen GB; Schaeffer LR; Allen BO
    J Anim Breed Genet; 2006 Jun; 123(3):191-7. PubMed ID: 16706924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined linkage and linkage disequilibrium QTL mapping in multiple families of maize (Zea mays L.) line crosses highlights complementarities between models based on parental haplotype and single locus polymorphism.
    Bardol N; Ventelon M; Mangin B; Jasson S; Loywick V; Couton F; Derue C; Blanchard P; Charcosset A; Moreau L
    Theor Appl Genet; 2013 Nov; 126(11):2717-36. PubMed ID: 23975245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of linkage disequilibrium measures between multi-allelic markers as predictors of linkage disequilibrium between markers and QTL.
    Zhao H; Nettleton D; Soller M; Dekkers JC
    Genet Res; 2005 Aug; 86(1):77-87. PubMed ID: 16181525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of methods for whole-genome QTL mapping using dense markers in four livestock species.
    Legarra A; Croiseau P; Sanchez MP; Teyssèdre S; Sallé G; Allais S; Fritz S; Moreno CR; Ricard A; Elsen JM
    Genet Sel Evol; 2015 Feb; 47(1):6. PubMed ID: 25885597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of quantitative trait loci underlying milk traits in Spanish dairy sheep using linkage plus combined linkage disequilibrium and linkage analysis approaches.
    Garcia-Gámez E; Gutiérrez-Gil B; Suarez-Vega A; de la Fuente LF; Arranz JJ
    J Dairy Sci; 2013 Sep; 96(9):6059-69. PubMed ID: 23810588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Joint analysis of two breed cross populations in pigs to improve detection and characterization of quantitative trait loci.
    Kim JJ; Rothschild MF; Beever J; Rodriguez-Zas S; Dekkers JC
    J Anim Sci; 2005 Jun; 83(6):1229-40. PubMed ID: 15890800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. QTL mapping using high-throughput sequencing.
    Jamann TM; Balint-Kurti PJ; Holland JB
    Methods Mol Biol; 2015; 1284():257-85. PubMed ID: 25757777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Confirmation and fine-mapping of a major QTL for resistance to infectious pancreatic necrosis in Atlantic salmon (Salmo salar): population-level associations between markers and trait.
    Moen T; Baranski M; Sonesson AK; Kjøglum S
    BMC Genomics; 2009 Aug; 10():368. PubMed ID: 19664221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. QTL linkage analysis of connected populations using ancestral marker and pedigree information.
    Bink MC; Totir LR; ter Braak CJ; Winkler CR; Boer MP; Smith OS
    Theor Appl Genet; 2012 Apr; 124(6):1097-113. PubMed ID: 22228242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A paternally imprinted QTL for mature body mass on mouse chromosome 8.
    Rance KA; Fustin JM; Dalgleish G; Hambly C; Bünger L; Speakman JR
    Mamm Genome; 2005 Aug; 16(8):567-77. PubMed ID: 16180138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative trait loci mapping of calving and conformation traits on Bos taurus autosome 18 in the German Holstein population.
    Brand B; Baes C; Mayer M; Reinsch N; Seidenspinner T; Thaller G; Kühn Ch
    J Dairy Sci; 2010 Mar; 93(3):1205-15. PubMed ID: 20172241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping quantitative trait loci in noninbred mosquito crosses.
    Wang S; Huang S; Zheng L; Zhao H
    Genetics; 2006 Apr; 172(4):2293-308. PubMed ID: 16415368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Maternal effects as the cause of parent-of-origin effects that mimic genomic imprinting.
    Hager R; Cheverud JM; Wolf JB
    Genetics; 2008 Mar; 178(3):1755-62. PubMed ID: 18245362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A two-step approach to map quantitative trait loci for meat quality in connected porcine F(2) crosses considering main and epistatic effects.
    Stratz P; Baes C; Rückert C; Preuss S; Bennewitz J
    Anim Genet; 2013 Feb; 44(1):14-23. PubMed ID: 22509991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of a two-marker-haplotype on Bos taurus autosome 18 associated with somatic cell score in German Holstein cattle.
    Brand B; Baes C; Mayer M; Reinsch N; Kühn C
    BMC Genet; 2009 Sep; 10():50. PubMed ID: 19725965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous selection of major and minor genes: use of QTL to increase selection efficiency of coleoptile length of wheat (Triticum aestivum L.).
    Wang J; Chapman SC; Bonnett DG; Rebetzke GJ
    Theor Appl Genet; 2009 Jun; 119(1):65-74. PubMed ID: 19360392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.